153 research outputs found

    Nanoscale structure, dynamics and power conversion efficiency correlations in small molecule and oligomer-based photovoltaic devices

    Get PDF
    Photovoltaic functions in organic materials are intimately connected to interfacial morphologies of molecular packing in films on the nanometer scale and molecular levels. This review will focus on current studies on correlations of nanoscale morphologies in organic photovoltaic (OPV) materials with fundamental processes relevant to photovoltaic functions, such as light harvesting, exciton splitting, exciton diffusion, and charge separation (CS) and diffusion. Small molecule photovoltaic materials will be discussed here. The donor and acceptor materials in small molecule OPV devices can be fabricated in vacuum-deposited, multilayer, crystalline thin films, or spin-coated together to form blended bulk heterojunction (BHJ) films. These two methods result in very different morphologies of the solar cell active layers. There is still a formidable debate regarding which morphology is favored for OPV optimization. The morphology of the conducting films has been systematically altered; using variations of the techniques above, the whole spectrum of film qualities can be fabricated. It is possible to form a highly crystalline material, one which is completely amorphous, or an intermediate morphology. In this review, we will summarize the past key findings that have driven organic solar cell research and the current state-of-the-art of small molecule and conducting oligomer materials. We will also discuss the merits and drawbacks of these devices. Finally, we will highlight some works that directly compare the spectra and morphology of systematically elongated oligothiophene derivatives and compare these oligomers to their polymer counterparts. We hope this review will shed some new light on the morphology differences of these two systems

    The causal relationship between gut microbiota and leukemia: a two-sample Mendelian randomization study

    Get PDF
    BackgroundThe association between gut microbiota and leukemia has been established, but the causal relationship between the two remains unclear.MethodsA bidirectional two-sample Mendelian randomization (MR) was used to analyze the causal relationship between gut microbiota and leukemia. Microbiome data (n = 14,306) and leukemia (n = 1,145) data were both sourced from European populations. Single nucleotide polymorphisms (SNPs) were selected as instrumental variables based on several criteria. We employed various MR methods, such as the inverse variance weighted (IVW) method, to evaluate the causal effect between exposure and outcomes and conducted sensitivity analyses to validate the heterogeneity and pleiotropy of the instrumental variables.Results5,742 qualified instrumental variables were included. In the primary MR results, a total of 10 gut microbial taxa were associated with leukemia risk. Genus Blautia and genus Lactococcus are risk factors for acute lymphoblastic leukemia [genus Blautia odds ratio (OR): 1.643, 95% confidence interval (CI): 1.592 ~ 1.695, Adjusted p < 0.001; genus Lactococcus OR: 2.152, 95% CI: 1.447 ~ 3.199, Adjusted p = 0.011]. Genus Rikenellaceae RC9 gut group, genus Anaerostipes, genus Slackia, and genus Lachnospiraceae ND3007 group are risk factors for acute myeloid leukemia [genus Rikenellaceae RC9 gut group OR: 1.964, 95% CI: 1.573 ~ 2.453, Adjusted p < 0.001; genus Anaerostipes OR: 2.515, 95% CI: 1.503 ~ 4.209, Adjusted p = 0.017; genus Slackia OR: 2.553, 95% CI: 1.481 ~ 4.401, Adjusted p = 0.022; genus Lachnospiraceae ND3007 group OR: 3.417, 95% CI: 1.960 ~ 5.959, Adjusted p = 0.001]. Genus Ruminococcaceae UCG011 and genus Ruminococcaceae UCG014 were risk factors for chronic myeloid leukemia (genus Ruminococcaceae UCG011 OR: 2.010, 95% CI: 1.363 ~ 2.963, Adjusted p = 0.044; genus Ruminococcaceae UCG014 OR: 3.101, 95% CI: 1.626 ~ 5.915, Adjusted p = 0.044). Genus Slackia was a protective factor for acute lymphoblastic leukemia (genus Slackia OR: 0.166, 95% CI: 0.062 ~ 0.443, Adjusted p = 0.017). Family Acidaminococcaceae was a protective factor for acute myeloid leukemia (family Acidaminococcaceae OR: 0.208, 95% CI: 0.120 ~ 0.361, Adjusted p < 0.001). Genus Desulfovibrio was a protective factor for chronic lymphoblastic leukemia (genus Desulfovibrio OR: 0.581, 95% CI: 0.440 ~ 0.768, Adjusted p = 0.020). Sensitivity analysis revealed no heterogeneity or pleiotropy between SNPs.ConclusionThis study revealed the causal relationship between the gut microbiota and leukemia, and identified potential pathogenic bacteria and probiotic taxa associated with the onset of leukemia. This research may aid in the early detection of various types of leukemia and offer a new direction for the prevention and treatment of leukemia

    Considerations for Master Protocols Using External Controls

    Full text link
    There has been an increasing use of master protocols in oncology clinical trials because of its efficiency and flexibility to accelerate cancer drug development. Depending on the study objective and design, a master protocol trial can be a basket trial, an umbrella trial, a platform trial, or any other form of trials in which multiple drugs and/or multiple subpopulations are studied in parallel under a single protocol. External data and evidence (EDE) can be used in the design and analysis of master protocols such as external controls for treatment effect estimation, which can further improve efficiency of the master protocol trial. This paper provides an overview of different types of external controls and their unique features when used in master protocols. Some key considerations in master protocols with external controls are discussed including construction of estimands and assessment of fit-for-use real-world data. A targeted learning-based causal roadmap is presented which constitutes three key steps: (1) define a target statistical estimand that aligns with the causal estimand for the study objective, (2) use an efficient estimator to estimate the target statistical estimand and its uncertainty, and (3) evaluate the impact of causal assumptions on the study conclusion by performing a sensitivity analysis. Two illustrative examples are provided for master protocols using external controls

    Inverse Correlation Between Plasma Adropin and ET-1 Levels in Essential Hypertension: A Cross-Sectional Study

    Get PDF
    Adropin is a recently identified bioactive protein that promotes energy homeostasis by affecting glucose and lipid metabolism. Recently, adropin has also been reported to be associated with endothelial dysfunction. Also, ET-1, as a biomarker for endothelial dysfunction, is a key regulator in hypertension. Accordingly, the aim of the present study was to detect the relationship between plasma adropin and ET-1 levels in hypertension. A total of 123 participants, diagnosed with primary hypertension on the basis of World Health Organization criteria (systolic blood pressure [SBP] ≥ 140 mmHg and/or diastolic blood pressure (DBP) ≥ 90 mmHg), and 58 normotensive subjects were enrolled in the cross-sectional study from October 2011 to December 2013. All study participants were older than 18 years of age. Adropin and ET-1 levels were measured by enzyme-linked immunosorbent assay (ELISA). We found that plasma adropin levels were significantly lower in hypertensives compared with controls (3.18 ± 1.00 vs 4.21 ± 1.14 ng/mL, P \u3c 0.001). Plasma ET-1 levels were higher in hypertensives than controls (2.60 ± 1.14 vs 1.54 ± 0.66 pg/mL, P \u3c 0.001). Adropin had a negative correlation with DBP (r = -0.40, P \u3c 0.001), SBP (r = -0.49, P \u3c 0.001), and adjusted for age, body mass index, SBP, DBP, glucose, TC, TG, LDL, and Cr, there was a negative correlation between ET-1 and adropin (r = -0.20, P = 0.04). In multivariate logistic regression analysis of the variables, ET-1 (odds ratio [OR], 3.84; 95% CI, 2.16-6.81; P \u3c 0.001) and adropin (OR, 0.99; 95% CI, 0.99 -1.0; P \u3c  .001) were found to be independent predictors for hypertension.In conclusion, decreased plasma adropin levels are associated with increased blood pressure in hypertension. Adropin is an independent predictor for hypertension, and may influence blood pressure by protecting endothelial function

    Science and technology backyard improves farmers’ productivity

    Full text link

    Functional evaluation of cyclosporine metabolism by CYP3A4 variants and potential drug interactions

    Get PDF
    The aim of this study is to investigate the effects of CYP3A4 genetic polymorphisms on the metabolism of cyclosporine (CsA) in vitro and identify drugs that interact with CsA. An enzymatic incubation system was developed to evaluate the kinetic parameters of CYP3A4 on CsA catalysis. A total of 132 drugs were screened to identify potential drug–drug interactions. Sprague–Dawley rats were used to determine the interaction between CsA and nimodipine and nisoldipine. The metabolite AM1 was measured by ultra-performance liquid chromatography–tandem mass spectrometry. The results demonstrate that 16 CYP3A4 variants (CYP3A4.7, 8, 9, 12, 13, 14, 16, 18, 19, 23, 24, 28, 31, 32, 33, and 34) have a lower metabolic capacity for CsA, ranging from 7.19% to 72.10%, than CYP3A4.1. In contrast, the relative clearance rate of CYP3A4.5 is significantly higher than that of CYP3A4.1. Moreover, CYP3A4.20 loses its catalytic ability, and five other variants have no significant difference. A total of 12 drugs, especially calcium channel blockers, were found to remarkably inhibit the metabolism of CsA with an inhibitory rate of over 80%. Nimodipine inhibits the activity of CsA in rat liver microsomes with an IC50 of 20.54 ± 0.93 μM, while nisoldipine has an IC50 of 16.16 ± 0.78 μM. In in vivo, three groups of Sprague–Dawley rats were administered CsA with or without nimodipine or nisoldipine; the AUC(0-t) and AUC(0-∞) of CsA were significantly increased in the nimodipine group but not obviously in the nisoldipine group. Mechanistically, the inhibition mode of nimodipine on cyclosporine metabolism is a mixed inhibition. Our data show that gene polymorphisms of CYP3A4 and nimodipine remarkably affect the metabolism of CsA, thus providing a reference for the precise administration of CsA

    Research Philosophy of Modern Cryptography

    Get PDF
    Proposing novel cryptography schemes (e.g., encryption, signatures, and protocols) is one of the main research goals in modern cryptography. In this paper, based on more than 800 research papers since 1976 that we have surveyed, we introduce the research philosophy of cryptography behind these papers. We use ``benefits and ``novelty as the keywords to introduce the research philosophy of proposing new schemes, assuming that there is already one scheme proposed for a cryptography notion. Next, we introduce how benefits were explored in the literature and we have categorized the methodology into 3 ways for benefits, 6 types of benefits, and 17 benefit areas. As examples, we introduce 40 research strategies within these benefit areas that were invented in the literature. The introduced research strategies have covered most cryptography schemes published in top-tier cryptography conferences

    Development and evaluation of a real-time recombinase-aid amplification assay for rapid detection of Pseudomonas aeruginosa

    Get PDF
    Objective To establish a real-time recombinase-aid amplification (RAA) method for rapid detection of Pseudomonas aeruginosa. Methods Specific primers and exo probes based on ecfX gene of P. aeruginosa were designed in this study, and the validity of the method was evaluated by sensitivity, specificity and suspected strains detection. Results Real-time RAA was performed successfully at 39℃ for 20 min. Only the P. aeruginosa strains but not other bacteria were amplified, showing the good specificity. The limit of detection was 3.0×103 fg genomic DNA per reaction, and 1.0×103 CFU P. aeruginosa pure culture per reaction. The developed real-time RAA was further evaluated on 36 suspected of P. aeruginosa, which were identified successfully to be P. aeruginosa.The detection result were the same with those of a real-time PCR assay and the VITEK 2 Compact. Conclusion The developed real-time RAA assay is a rapid, simple and reliable tool for accurate detection of P. aeruginosa of diverse origins
    corecore