420 research outputs found

    Follistatin N terminus differentially regulates muscle size and fat in vivo

    Get PDF
    Delivery of follistatin (FST) represents a promising strategy for both muscular dystrophies and diabetes, as FST is a robust antagonist of myostatin and activin, which are critical regulators of skeletal muscle and adipose tissues. FST is a multi-domain protein, and deciphering the function of different domains will facilitate novel designs for FST-based therapy. Our study aims to investigate the role of the N-terminal domain (ND) of FST in regulating muscle and fat mass in vivo. Different FST constructs were created and packaged into the adeno-associated viral vector (AAV). Overexpression of wild-type FST in normal mice greatly increased muscle mass while decreasing fat accumulation, whereas overexpression of an N terminus mutant or N terminus-deleted FST had no effect on muscle mass but moderately decreased fat mass. In contrast, FST-I-I containing the complete N terminus and double domain I without domain II and III had no effect on fat but increased skeletal muscle mass. The effects of different constructs on differentiated C2C12 myotubes were consistent with the in vivo finding. We hypothesized that ND was critical for myostatin blockade, mediating the increase in muscle mass, and was less pivotal for activin binding, which accounts for the decrease in the fat tissue. An in vitro TGF-beta1-responsive reporter assay revealed that FST-I-I and N terminus-mutated or -deleted FST showed differential responses to blockade of activin and myostatin. Our study provided direct in vivo evidence for a role of the ND of FST, shedding light on future potential molecular designs for FST-based gene therapy

    Magnesium Nutrient Application Induces Metabolomics and Physiological Responses in Mulberry (Morus alba) Plants

    Get PDF
    Mulberry (Morus alba) is a significant plant with numerous economic benefits; however, its growth and development are affected by nutrient levels. A high level of magnesium (Mg) or magnesium nutrient starvation are two of the significant Mg factors affecting plant growth and development. Nevertheless, M. alba's metabolic response to different Mg concentrations is unclear. In this study, different Mg concentrations, optimal (3 mmol/L), high (6 mmol/L and 9 mmol/L), or low (1 and 2 mmol/L) and deficient (0 mmol/L), were applied to M. alba for three weeks to evaluate their effects via physiological and metabolomics (untargeted; liquid chromatography-mass spectrometry (LC-MS)) studies. Several measured physiological traits revealed that Mg deficiency and excess Mg altered net photosynthesis, chlorophyll content, leaf Mg content and fresh weight, leading to remarkable reductions in the photosynthetic efficiency and biomass of mulberry plants. Our study reveals that an adequate supply of the nutrient Mg promoted the mulberry's physiological response parameters (photosynthesis, chlorophyll content, leaf and root Mg content and biomass). These classes of compounds were mainly involved in lipid metabolism, amino acid metabolism, energy metabolism, the biosynthesis of other secondary metabolites, the biosynthesis of other amino acids, the metabolism of cofactors and vitamin pathways, indicating that mulberry plants respond to Mg concentrations by producing a divergent metabolism. The supply of Mg nutrition was an important factor influencing the induction of DEMs, and these metabolites were critical in several metabolic pathways related to magnesium nutrition. This study provides a fundamental understanding of DEMs in M. alba's response to Mg nutrition and the metabolic mechanisms involved, which may be critical to the mulberry genetic breeding program

    Metabolomics and physio-chemical analyses of mulberry plants leaves response to manganese deficiency and toxicity reveal key metabolites and their pathways in manganese tolerance

    Get PDF
    IntroductionManganese (Mn) plays a pivotal role in plant growth and development. Aside aiding in plant growth and development, Mn as heavy metal (HM) can be toxic in soil when applied in excess. Morus alba is an economically significant plant, capable of adapting to a range of environmental conditions and possessing the potential for phytoremediation of contaminated soil by HMs. The mechanism by which M. alba tolerates Mn stresses remains obscure.MethodsIn this study, Mn concentrations comprising sufficiency (0.15 mM), higher regimes (1.5 mM and 3 mM), and deficiency (0 mM and 0.03 mM), were applied to M. alba in pot treatment for 21 days to understand M. alba Mn tolerance. Mn stress effects on the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci), chlorophyll content, plant morphological traits, enzymatic and non-enzymatic parameters were analyzed as well as metabolome signatures via non-targeted LC-MS technique.ResultsMn deficiency and toxicity decrease plant biomass, Pn, Ci, Gs, Tr, and chlorophyll content. Mn stresses induced a decline in the activities of catalase (CAT) and superoxide dismutase (SOD), while peroxidase (POD) activity, and leaf Mn content, increased. Soluble sugars, soluble proteins, malondialdehyde (MDA) and proline exhibited an elevation in Mn deficiency and toxicity concentrations. Metabolomic analysis indicates that Mn concentrations induced 1031 differentially expressed metabolites (DEMs), particularly amino acids, lipids, carbohydrates, benzene and derivatives and secondary metabolites. The DEMs are significantly enriched in alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, galactose metabolism, pantothenate and CoA biosynthesis, pentose phosphate pathway, carbon metabolism, etc.Discussion and conclusionThe upregulation of Galactinol, Myo-inositol, Jasmonic acid, L-aspartic acid, Coproporphyrin I, Trigonelline, Pantothenol, and Pantothenate and their significance in the metabolic pathways makes them Mn stress tolerance metabolites in M. alba. Our findings reveal the fundamental understanding of DEMs in M. alba’s response to Mn nutrition and the metabolic mechanisms involved, which may hold potential significance for the advancement of M. alba genetic improvement initiatives and phytoremediation programs

    Association between prophylactic hydration volume and risk of contrast-induced nephropathy after emergent percutaneous coronary intervention

    Get PDF
    Background: Intravenous hydration during percutaneous coronary intervention (PCI) significantly reduces the risk of contrast-induced nephropathy (CIN), but there are no well-defined protocols regard¬ing the optimal hydration volume (HV) required to prevent CIN following emergent PCI. Therefore, this study investigates the association between the intravenous HV and CIN after emergent PCI. Methods: 711 patients were prospectively recruited who had underwent emergent PCI with hydration at routine speed and the relationship was investigated between HV or HV to weight ratio (HV/W) and the CIN risk, which was defined as a ≥ 25% or ≥ 0.5 mg/dL increase in serum creatinine levels from baseline within 48–72 h of exposure to the contrast. Results: The overall CIN incidence was 24.7%. Patients in the higher HV quartiles had elevated CIN rates. Multivariate analysis showed that higher HV/W ratios were not associated with a decreased risk (using the HV) of CIN, but they were associated with an increased risk (using the HV/W) of CIN (Q4 vs. Q1: adjusted odds ratio 1.99; 95% confidence interval 1.05–3.74; p = 0.034). A higher HV/W ratio was not significantly associated with a reduced risk of long-term death (all p > 0.05). Conclusions: The data suggests that a higher total HV is not associated with a decreased CIN risk or beneficial long-term prognoses, and that excessive HV may increase the risk of CIN after emergent PCI

    Research on Bi-level Cooperative Robust Planning of Distributed Renewable Energy in Incremental Distribution Network Considering Demand Response

    Get PDF
    The paper constructs a two-level collaborative planning model for incremental distribution network considering demand response and distributed renewable energy access. In the upper model, the goal is to minimize the investment cost of the distribution network, and the lower model takes the system's operating cost optimally, fully considers the uncertainty of renewable energy output, and introduces robust optimization to solve it. It can be seen from the simulation results that the consideration of demand response in the distribution network planning is conducive to delaying investment costs, enhancing power user load flexibility, and effectively avoiding load shedding and other problems. The research results lay the foundation for the feasibility of demand response resources participating in power grid plannin
    • …
    corecore