1,170 research outputs found

    H∞ model reduction for discrete-time Markovian jump systems with deficient mode information

    Get PDF
    This paper investigates the problem of H∞ model reduction for a class of discrete-time Markovian jump linear systems (MJLSs) with deficient mode information, which simultaneously involves the exactly known, partially unknown, and uncertain transition probabilities. By fully utilizing the properties of the transition probability matrices, together with the convexification of uncertain domains, a new H∞ performance analysis criterion for the underlying MJLSs is first derived, and then two approaches, namely, the convex linearisation approach and iterative approach, for the H∞ model reduction synthesis are proposed. Finally, a simulation example is provided to illustrate the effectiveness of the proposed design methods

    Structure Analysis for Tunnel Longitudinal Deformation Based on Segment Dislocation Mode

    Get PDF
    AbstractAccording to tunnel structure around joints, tunnel longitudinal deformation is analyzed and a three-dimensional finite element model is built based on segment dislocation mode. Tunnel structure stress analysis is conducted from two aspects of segment in the shear and bolt in the tension. The analysis results show: (1) Segment shear model. When segment dislocation reaches 0.03mm, the principal stressσ1 exceeds 3.0Mpa which is over concrete's tensile strength. Therefore, when convex tenon and concave tenon generate shear, there must be horizontal slipping and bolt is tensioned. (2) Bolt tension model. When joint opening value reaches 2mm, bolt stress exceeds 640Mpa, which is bolt's yield strength. When joint opening value reaches 6mm, which is the waterproof control standard for tunnel, bolt stress reaches 688.7Mpa, which is less than bolt's failure strength. The subway tunnel's structure safety should be controlled from the perspective of waterproof

    Myeloid-Derived Suppressor Cells Participate in Preventing Graft Rejection

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells and have a tremendous potential to suppress immune responses. MDSCs accumulate during tumor progression, autoimmunity, chronic infection, transplantation, and other pathological conditions and can potently suppress T-cell function. Here, we discuss recent findings that describe the molecular mechanisms of MDSCs suppressing T-cell immune responses as well as recent observations that MDSCs may have roles in transplant tolerance

    Trajectory tracking control based on adaptive neural dynamics for four-wheel drive omnidirectional mobile robots

    Get PDF
    There is usually the speed jump problem existing in conventional back-stepping tracking control for four-wheel drive omni-directional mobile robots, a trajectory tracking controller based on adaptive neural dynamics model is proposed. Because of the smoothness and boundedness of the output from the neural dynamics model, it produces a gradually varying tracking speed instead of the jumping speed, and the parameters are designed to avoid the control values exceeding their limits. And then, a parameter adaptive controller is presented to improve control performance. Simulation results of different paths and comparison with the conventional back-stepping technique show that the approach is effective, and the system has a good performance with smooth output

    Trajectory tracking control based on adaptive neural dynamics for four-wheel drive omnidirectional mobile robots

    Get PDF
    There is usually the speed jump problem existing in conventional back-stepping tracking control for four-wheel drive omni-directional mobile robots, a trajectory tracking controller based on adaptive neural dynamics model is proposed. Because of the smoothness and boundedness of the output from the neural dynamics model, it produces a gradually varying tracking speed instead of the jumping speed, and the parameters are designed to avoid the control values exceeding their limits. And then, a parameter adaptive controller is presented to improve control performance. Simulation results of different paths and comparison with the conventional back-stepping technique show that the approach is effective, and the system has a good performance with smooth output
    corecore