311 research outputs found

    An integral sliding-mode parallel control approach for general nonlinear systems via piecewise affine linear models

    Full text link
    The fundamental problem of stabilizing a general nonaffine continuous-time nonlinear system is investigated via piecewise affine linear models (PALMs) in this article. A novel integral sliding-mode parallel control (ISMPC) approach is developed, where an uncertain piecewise affine system (PWA) is constructed to model a nonaffine continuous-time nonlinear system equivalently on a compact region containing the origin. A piecewise sliding-mode parallel controller is designed to globally stabilize the PALM and, consequently, to semiglobally stabilize the original nonlinear system. The proposed scheme enjoys three favorable features: (i) some restrictions on the system input channel are eliminated, thus the developed method is more relaxed compared with the published approaches; (ii) it is convenient to be used to deal with both matched and unmatched uncertainties of the system; and (iii) the proposed piecewise parallel controller generates smooth control signals even around the boundaries between different subspaces, which makes the developed control strategy more implementable and reliable. Moreover, we provide discussions about the universality analysis of the developed control strategy for two kinds of typical nonlinear systems. Simulation results from two numerical examples further demonstrate the performance of the developed control approach

    The Impact of User Heterogeneity on Knowledge Collaboration Performance

    Get PDF
    Existing research showed that the social Q & A community is centred on user participation and can improve knowledge collaboration performance by means of heterogeneous knowledge, but it did not reveal the process and mechanism. This paper takes the user behaviours of the Zhihu which is the largest social Q & A community in China as the research object. From an interactive perspective, it builds a research model of the relationship between user heterogeneity and knowledge collaboration performance by establishing measurement indicators for relationship analysis according to the user behaviours data of Zhihu. The results show that there is an inverted Ushaped relationship between user heterogeneity and knowledge collaboration performance, and the interpersonal interaction of users plays a mediating role in the relationship between user heterogeneity and knowledge collaboration performance, while the mediating effect of machine interaction is not significant. This paper, based on this, puts forward some suggestions for better development of social Q & A community

    A Novel Blind Separation Method in Magnetic Resonance Images

    Get PDF
    A novel global search algorithm based method is proposed to separate MR images blindly in this paper. The key point of the method is the formulation of the new matrix which forms a generalized permutation of the original mixing matrix. Since the lowest entropy is closely associated with the smooth degree of source images, blind image separation can be formulated to an entropy minimization problem by using the property that most of neighbor pixels are smooth. A new dataset can be obtained by multiplying the mixed matrix by the inverse of the new matrix. Thus, the search technique is used to searching for the lowest entropy values of the new data. Accordingly, the separation weight vector associated with the lowest entropy values can be obtained. Compared with the conventional independent component analysis (ICA), the original signals in the proposed algorithm are not required to be independent. Simulation results on MR images are employed to further show the advantages of the proposed method

    Characterising User Transfer Amid Industrial Resource Variation: A Bayesian Nonparametric Approach

    Full text link
    In a multitude of industrial fields, a key objective entails optimising resource management whilst satisfying user requirements. Resource management by industrial practitioners can result in a passive transfer of user loads across resource providers, a phenomenon whose accurate characterisation is both challenging and crucial. This research reveals the existence of user clusters, which capture macro-level user transfer patterns amid resource variation. We then propose CLUSTER, an interpretable hierarchical Bayesian nonparametric model capable of automating cluster identification, and thereby predicting user transfer in response to resource variation. Furthermore, CLUSTER facilitates uncertainty quantification for further reliable decision-making. Our method enables privacy protection by functioning independently of personally identifiable information. Experiments with simulated and real-world data from the communications industry reveal a pronounced alignment between prediction results and empirical observations across a spectrum of resource management scenarios. This research establishes a solid groundwork for advancing resource management strategy development
    corecore