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A novel global search algorithm based method is proposed to separate MR images blindly in this paper. The key point of the
method is the formulation of the new matrix which forms a generalized permutation of the original mixing matrix. Since the
lowest entropy is closely associated with the smooth degree of source images, blind image separation can be formulated to an
entropy minimization problem by using the property that most of neighbor pixels are smooth. A new dataset can be obtained
by multiplying the mixed matrix by the inverse of the new matrix. Thus, the search technique is used to searching for the lowest
entropy values of the new data. Accordingly, the separation weight vector associated with the lowest entropy values can be obtained.
Compared with the conventional independent component analysis (ICA), the original signals in the proposed algorithm are not
required to be independent. Simulation results on MR images are employed to further show the advantages of the proposed method.

1. Introduction

Blind source separation (BSS) aims at recovering unknown
source signals only from the observed data. It has received
considerable attention for its potential applications in a lot
of fields, such as biomedical signal processing, image pro-
cessing, and digital communications. The basic instantaneous
linear mixture model used in BSS is as follows:

x () = As (1), @)

where s(t) = [s,(£), s,(¢), ... sm(t)]T isamx 1 vector of source
signals which represents the samples of unobserved source
signals, x(t) = [x,(t), x,(t),... ,xn(t)]T is a n x 1 vector of
mixed signals observed by n sensors, and A = [a;,a,,...,4,,]
is an unknown # X m mixing matrix of full rank. Assume the
weight matrix W € R and the output 5(¢) = Wx(t) at time
t. The goal of a BSS algorithm is to find a weight matrix W
such that 5(¢) is a permutation of source signals s(t) up to

a scaling factor. It is known that when n > m the principal
component analysis (PCA) technique can be used to reduce
the dimensionality of observations. For this reason, we only
consider the case that n = m in this paper.

Since the pioneering work by Hyvérinen et al. [1], vari-
ous separation algorithms have been proposed for different
BSS subjects [2-6], for example, Oja et al. considered the
nonnegative assumption and proposed some algorithms to
separate these nonnegative sources [7-9]. A particular appli-
cation of these algorithms is the blind separation of mixed
images. More recently, much attention has been paid to BSS
methods that make use of a priori information, such as sparse
component analysis which works under the assumption that
the sources can be represented by sparse signals. For the
application of image separation, we here consider the a
priori information that comes from the observation that
most of neighbor pixels in a small patch are smooth. The
local smoothness means little randomness, that is, the lower
entropy values in the small patch compared to that of



the image space. As stated in [10] that the smooth degree
of any linear mixture of the source images is between the
greatest smooth degree and the smallest smooth degree of the
source images, we can formulate a proper entropy like func-
tion so that the source images would have the lowest entropy
and their mixtures would have higher entropy values. By
taking the entropy like function as the objective function, the
global search technique is used to obtain the lowest entropy
values of image signal, that is, the source images. The two-
dimensional matrix formats will be treated for utilizing the
full information carried by images. The result of experiment
demonstrated that our method provides a good separation
performance even for rich texture images. In [11], by using
SVD technique, the mixed images are decomposed into
three parts and the global stochastic optimization technique
is used to recover the source images by searching for the
lowest entropy values of images. Although Guo and Garland’s
algorithm has achieved a better performance compared to
the conventional ICA method, however, it will cause large
memory requirements. In other words, their algorithm is
infeasible on most of computers. In [10], the separation
performance is low in separating texture images.

2. Materials and Methods

2.1. Problem Statement. For natural image signal, the neigh-
bor pixels in a small patch always present strongly smooth
property, which means that images are locally smooth (see
[10] for more details). However, the smooth property is
inapplicable to those images with rich texture. For example,
the textural image is coarser according to the six features of
image proposed by Tamura et al. To evaluate the coarseness
of natural image and textural image, the following coarseness
measure is used, which is defined in [12],

1 m n o
Fcrs = mx 712 ;Sbest (1’ J) > (2)

where m and n are the effective width and height of
the picture, respectively. The coarseness of natural image
(Figure 1(a)) and textural image (Figure 1(b)) is, respectively,
0.9754 and 30.9368. Two segments of the natural image and
the textual image, which are transformed to a vector in row-
wise order, respectively, are drawn in Figure 1(c). Both images
are of unit variance. From this key observation, the textural
image is more random than natural image.

Motivated by the special phenomenon depicted in
Figure 1(c), we can formulate (3) as follows:

y(k)=s(t)-st-k, ©)

where k represents a positive integer. The key point here is
that y(k) has a large amount of columns in which only one
element is not equal to zero. This phenomenon is shown in
Figure 2.

By substituting (3) into (1), we can obtain the following
equation:

z(k)=xt)-x(t-k)=A(s(t)-s(t—k)). (4)
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FIGURE I: (a) Natural image; (b) textural image; (c) the segments of
textural image and natural image.
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FIGURE 2: Comparison of s and y.

For image signals, some hypotheses are made naturally.

(A) Pixels are positive.

(B) There at least exist m vectors within the matrix z(k)
which can construct the n x m matrix A which is a
generalized permutation of the mixing matrix A up
to a scaling factor.

For image signals, the hypothesis A is very normal, and
hypothesis B can be met by modulating parameter k. Since
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y(k) has a large amount of columns that only one element
is not equal to zero, the matrix z(k) would contain some
columns which can form the matrix A € R™™, which is a
permutation of A up to a scaling factor. Namely, the matrix A
is equivalent to the mixing matrix A by using normalization.
Thus, the new matrix can be achieved as follows:

s=4 x, )
where (1) represents inverse operator. As stated above, the
entropies of pure images would be lower than those of the
mixed images. We take the form of (6) to minimize an
entropy like function to approximate the entropy of s [11, 13]:

E=-) 2 pslnpy, ©)
i

where p;; = (Ix(i + 1,j + 1) + x(i, j) — x(G,j + 1) - x(i +
LAN/QIxG+ 1,7+ 1) + x(5, j) — x(G, j + 1) — x(@ + 1, )I).
The probability distribution p;; is the second derivative of the
data [11]. In other words, the entropy like function E estimates
the smoothness of the images. The pure source images can be
obtained by solving the following minimization problem:

min Fyy; = E + max {p x (707 1)}, (7)

where corr denotes the 2D correlation coefficient between any
two matrices and the parameter g = 0.0002 and p = 100000,
empirically. Thus, we can take (7) as the objective function of
global search algorithm.

2.2. The Standard Global Search Algorithm. In this paper, we
use global search algorithm, such as Genetic Algorithm (GA)
which is a useful solution to optimize and search problems,
to achieve pure images. Generally, GA, one of the popular
global stochastic optimization techniques, has been used to
separate blind sources. This algorithm belongs to the larger
class of evolutionary algorithms which are stemmed from the
natural genetics and biological evolutionary process. The GA
evaluates a population and generates a new one iteratively,
with each successive population referred to as a generation.
Given the current generation at iteration t,G(f), the GA
generates a new generation G(t + 1), based on the previous
generation, applying a set of genetic operations. The GA uses
three basic operators to manipulate the genetic composition
of a population: selection, crossover, and mutation [14].
Selection process determines the individuals for reproduc-
tion and the number of offspring that an individual can
produce. Generally, we select ninety percent of individuals to
produce new individuals and keep ten percent of individuals
which have minimum values. During the selection process,
each individual of current population is assigned a fitness
value derived from the corresponding objective function
value. Then, the selection algorithm selects individuals for
reproducing on the basis of their relative fitness values. In our
method, the fitness values are calculated using linear ranking
method with pressure two which can prevent premature con-
vergence [12]. The fitness of ith individual in the population
is defined as follows:

=1
F(xl.) =2 - Max+2 (Max-1) x,_l) (8)

where Max is always chosen in [1.1, 2], which is used to
determine the selective pressure such that no individuals
generate an excessive number of offspring. And x; is the
position of the ith individuals in the reordered population
based on their corresponding objective function values. The
crossover operator mixes the genes of two chromosomes
selected in the phase of reproduction, in order to combine the
features, especially the positive ones of them. In the proposed
algorithm, the simplest form of crossover is used, that is, one-
point crossover.

2.3. The Proposed Algorithm. Based on the state above, we
first utilize (3) to construct the new dataset t. Then we discard
those columns, whose all elements are equal to zero and
change those columns, whose all elements are negative values,
to positive value by multiplying by —1. After that, reindex
the vectors in z(k). In order to obtain a large amount of
information of mixed image, the value of k should not be
large. Those columns, whose elements are all equivalent to
zero, should be discarded from z(k). At the same time, those
columns, whose elements are negative, should be changed to
nonnegative value by multiplying by —1. Then we will call GA
twice. In the first time, the first pure image would be obtained
by minimizing the objective function using GA. That is to
say, we can find m vectors, which can form the matrix A,
from z(k). It means that the first pure image can be obtained
when the correlation coefficient is the minimum. The first
pure image would be saved and the GA is called again. Then
we compare all separated images with the first pure image.
In the case of only one separated image highly related with
the pure image and the others which are mostly uncorrelated
with the pure image, we can select a matrix of A to separate
mixed images in each iteration. At the end of iteration, we can
achieve a best matrix from A.

The blind separation algorithm based on GA can be
summarized as follows.

(1) Form dataset z(k) by computing z(k) = x(t) — x(x -
k).

(2) Change z(k) to be nonnegative and discard those
columns whose all elements are equal to zero.

(3) Reindex the vectors in z(k).

(4) Use GA to get the first pure image and save this image
as reference image.

(5) Call GA and compare all separated images with the
first pure image by computing the correlation itera-
tively. Thus, a best separated matrix can be achieved.

(6) Estimate S(t) by computing (5).

3. Results

3.1. Separation of Texture Image. In order to evaluate the pro-
posed method, we tested MR images [15]. The digital imaging
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FIGURE 3: Results of standard ICA and the proposed method on 3 correlated MRIs with noise variance 0.01. (a) Source images; (b) mixed
sources; (c) separation results using ICA method; (d) separation result using the proposed method.

and communications in medicine (DICOM) standard was To evaluate the separation performance, the following
created by the National Electrical Manufacturers Association performance index (PI) in [9] is used, which is defined by
(NEMA) to aid the distribution and viewing of medical
images, such as MR scans, and ultrasound. For this exper- _ i i |CiJ'| _

PI= 1
iment, we have collected 3 MR scans whose correlation 5\ o max; |Ci|
coeficients are between 0.6 and 0.8. The separated results are 9)
presented as follows. Figures 3(a), 3(b), and 3(c) illustrate the n [ n 'Cij'
results of proposed algorithm. For simplicity, we here only + Z <Z — 7 1> >
plot the separated images with the variance o* = 0.01. j=1 \i=1 Maxy |Ck1|
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FIGURE 5: Ground truth images of different brain tissue substances.

TABLE 1: Separation performance with different variances of Gaus-
sian white noise (average over 100 trials).

Algorithm PI(¢* =0) PI(6*=0.01) PI(c®=0.02)
Proposed method 2.3154e — 012 0.01324 1.5321
ICA method 4.2405 4.2305 47959

where C;; = A ' A is the combination of the separating and
mixing matrix. The Plindex is equal to zero if and only if
the matrix A is a permutation of A. The comparisons of the
two methods with different variances of zero mean Gaussian
white noise averaging over 100 trials are listed in Table 1.

From Table 1, we can see that the proposed algorithm in
a noise scenario is superior accuracy compared to the ICA
method.

4. Discussion

The brain has a number of constituents in the context of
a MRI scan of the brain, such as gray matter, white matter,
cerebrospinal fluid (CSF) fat, muscle/skin, and glial matter.
Now since each is unique, they would show unique charac-
teristics under a magnetic field. However, while taking a scan,
we get on MRI image of the entire brain. These scans can
be considered as an equivalent to the mixtures of the blind

source. The blind source separation technique can be used
for this to separate out the various constituents such as gray
matter, white matter, and CSFE. These images of independent
sources can be used for better diagnosis. The MR scans
are from the McGill Simulated Brain Database as shown in
Figure 4 [16].

Actually, the images [16] for these scans would be as
shown in Figure 5.

Magnetic Resonance Imaging can give much better soft
tissue contrast than that of CT for brain imaging, so MRI is
superior to CT. It means that even small changes in the proton
density and composition in the tissue are well represented
by MRI. Some new methods and techniques can be used to
improve scans obtained by MRI to improve diagnosis. Only
in the past decade, various algorithms have been proposed to
separate physiologically different components from EEG or
MEG data [17, 18], financial data [19], and even in fMRI [20,
21]. However, for MRI, BSS-based methods have not gained
much attention. Nakai et al. utilized ICA for the purpose
of separating physiologically independent components from
MRI scans [22]. They took MR images of 10 normal subjects,
3 subjects with brain tumor, and 1 subject with multiple
sclerosis and performed ICA on the data. They reported
success in improving contrast for gray and white matter,
which was conducive to the diagnosis of brain tumor. The
demyelination in multiple sclerosis cases was also enhanced



in the images. The ICA method could potentially separate out
all the tissues which had different relaxation characteristics
according to their research result which shows much promise
in biomedical domain. Take a set of MR frames as a single
multispectral image, where each band is taken during a
particular pulse sequence. Then ICA can be used on the data
to separate out the physiologically independent components.
Generally, a classifier such as the SVM would be used to
improve the contrast of the separated components.

5. Conclusions

In this paper, a novel GA-based algorithm is proposed to
separate MR images blindly by using smooth information
in both noisy-free and noise scenarios. In order to take
advantage of MR scans structure, we use an entropy like
function to represent the local smooth property of near pixels.
Let the entropy like function be the objective function, the
GA is used for searching for the lowest entropy values. The
performance of the proposed method is tested on NEMA
MR image database. Simulations confirm the efficiency and
effectiveness of the proposed algorithm. Because the standard
GA method is sensitive to strong noise (see Table 1), further
work is on the way to extend our method to the high noise
scenario.
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