39 research outputs found

    Two-photon excited hemoglobin fluorescence

    Get PDF
    We discovered that hemoglobin emits high energy Soret fluorescence when two-photon excited by the visible femtosecond light sources. The unique spectral and temporal characteristics of hemoglobin fluorescence were measured by using a time-resolved spectroscopic detection system. The high energy Soret fluorescence of hemoglobin shows the spectral peak at 438 nm with extremely short lifetime. This discovery enables two-photon excitation fluorescence microscopy to become a potentially powerful tool for in vivo label-free imaging of blood cells and vessels

    Label-free in vivo

    Full text link

    Specific two-photon imaging of live cellular and deep-tissue lipid droplets by lipophilic AIEgens at ultra-low concentration

    Get PDF
    Lipid droplets are highly associated with obesity, diabetes, inflammatory disorders and cancer. A reliable two-photon dye for specific lipid droplets imaging in live cells and live tissues at ultra-low concentration has rarely been reported. In this work, four new aggregation-induced emission luminogens (AIEgens) based on the naphthalene core were designed and synthesized for specific two-photon lipid droplets staining. The new molecules, namely NAP AIEgens, exhibit large Stokes shift (>110 nm), high solid-state fluorescence quantum yield (up to 30%), good two-photon absorption cross section (45–100 GM at 860 nm), high biocompatibility and good photostability. They could specifically stain lipid droplets at ultra-low concentration (50 nM) in a short time of 15 min. Such ultra-low concentration is the lowest value for lipid droplets staining in live cells reported so far. In vitro and ex vivo two-photon imaging of lipid droplets in live cells and live mice liver tissues were successfully demonstrated. In addition, selective visualization of lipid droplets in live mice liver tissues could be achieved at a depth of about 70 μm. These excellent properties render them as promising candidates for investigating lipid droplets-associated physiological and pathological processes in live biological samples

    Sensing cell metabolism by time-resolved autofluorescence

    No full text
    We built a time-resolved confocal fluorescence spectroscopy system equipped with the multichannel time-correlated single-photon-counting technique. The instrument provides a unique approach to study the fluorescence sensing of cell metabolism via analysis of the wavelength- and time-resolved intracellular autofluorescence. The experiments on monolayered cell cultures show that with UV excitation at 365 nm the time-resolved autofluorescence decays, dominated by free-bound reduced nicotinamide adenine dinucleotide signals, are sensitive indicators for cell metabolism. However, the sensitivity decreases with the increase of excitation wavelength possibly due to the interference from free-bound flavin adenine dinucleotide fluorescence. The results demonstrate that time-resolved autofluorescence can be potentially used as an important contrast mechanism to detect epithelial precancer. (c) 2006 Optical Society of America

    Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence

    No full text
    A time-resolved spectroscopic imaging system is built to study the fluorescence characteristics of nicotinamide adenine dinucleotide (NADH), an important metabolic coenzyme and endogenous fluorophore in cells. The system provides a unique approach to measure fluorescence signals in different cellular organelles and cytoplasm. The ratios of free over protein-bound NADH signals in cytosol and nucleus are slightly higher than those in mitochondria. The mitochondrial fluorescence contributes about 70\% of overall cellular fluorescence and is not a completely dominant signal. Furthermore, NADH signals in mitochondria, cytosol, and the nucleus respond to the changes of cellular activity differently, suggesting that cytosolic and nuclear fluorescence may complicate the well-known relationship between mitochondrial fluorescence and cellular metabolism. (C) 2008 Optical Society of Americ

    Imaging of epithelial tissue in vivo based on excitation of multiple endogenous nonlinear optical signals

    No full text
    We demonstrate an integrated optical microscope to image the living epithelial tissue by simultaneously exciting multiple endogenous nonlinear optical signals. By employing the spectral lifetime detection capability, this technology provides a unique approach to sensing the fine structure, the protein distribution, and the cellular metabolism of epithelial tissue in vivo. In particular, we investigated the two-photon excitation fluorescence (TPEF) of tryptophan, an essential amino acid serving as the building block of protein. Our findings show that the TPEF of cellular tryptophan produces a good contrast to reveal the morphology of the epithelial cell layer, and the contrast can be further enhanced by applying low-concentration acetic acid. (C) 2009 Optical Society of Americ

    Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures

    No full text
    A unified Mie and fractal model for light scattering by biological cells is presented. This model is shown to provide an excellent global agreement with the angular dependent elastic light scattering spectroscopy of cells over the whole visible range (400 to 700 nm) and at all scattering angles (1.1 to 165 deg) investigated. Mie scattering from the bare cell and the nucleus is found to dominate light scattering in the forward directions, whereas the random fluctuation of the background refractive index within the cell, behaving as a fractal random continuous medium, is found to dominate light scattering at other angles. Angularly dependent elastic light scattering spectroscopy aided by the unified Mie and fractal model is demonstrated to be an effective noninvasive approach to characterize biological cells and their internal structures. The acetowhitening effect induced by applying acetic acid on epithelial cells is investigated as an example. The changes in morphology and refractive index of epithelial cells, nuclei, and subcellular structures after the application of acetic acid are successfully probed and quantified using the proposed approach. The unified Mie and fractal model may serve as the foundation for optical detection of precancerous and cancerous changes in biological cells and tissues based on light scattering techniques

    Unified Mie and fractal scattering by biological cells and subcellular structures

    No full text
    Angle-resolved light scattering spectroscopy of biological cells is investigated in the visible wavelength range. A unified Mie and fractal model is shown to provide an accurate global agreement with light scattering spectra from 1.1 degrees to 165 degrees scattering angles. It is found that light scattering in forward directions (<8 degrees) is dominated by Mie scattering by the bare cell and nucleus, whereas light scattering at large angles (>20 degrees) is determined by fractal scattering by subcellular structures. The findings are consistent with the results of experimental investigation of the contributions of different cellular components to light scattering by cells. (C) 2007 Optical Society of America

    Autofluorescence of epithelial tissue: single-photon versus two-photon excitation

    No full text
    We instrumented a combined fluorescence spectroscopy and imaging system to characterize the single- and two-photon excited autofluorescence in epithelial tissue. Single-photon fluorescence (SPF) are compared with two-photon fluorescence (TPF) measured at the same location in epithelial tissue. It was found that the SPF and TPF signals excited at corresponding wavelengths are similar in non-keratinized epithelium, but the SPF and TPF spectra in the keratinized epithelium and the stromal layer are significant different. Specifically, the comparison of SPF signals with TPF signals in keratinized epithelial and stromal layers shows that TPF spectral peaks always have about 15-nm redshift with respect to SPF signals, and the TPF spectra are broader than SPF spectra. The results were generally consistent with the SPF and TPF measurements of pure nicotinamide adenine dinucleotide, flavin adenine dinucleotide, keratin and collagen, the major fluorophores in epithelium and stroma, respectively. The double peak structure of TPF spectra measured from keratinized layer suggests that there may be an unknown fluorophore responsible for the spectral peak in the long wavelength region. Furthermore, the TPF signals excited in a wide range of wavelengths provide accurate information on epithelial structure, which is an important advantage of TPF over SPF spectroscopy in the application for the diagnosis of tissue pathology. (C) 2008 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.2975866

    Two-photon Excited Blood Autofluorescence for In Vivo Imaging and Flow Cytometry

    No full text
    We report our recent discovery of two-photon autofluorescence from blood including red/white blood cells, platelets and plasma. We demonstrate the applications of blood autofluorescence for label-free in vivo imaging of microvasculature and flow cytometry
    corecore