236 research outputs found

    PVC Does Not Influence Cadmium Uptake or Effects in the Mussel (Mytilus edulis)

    Get PDF
    Microplastics have become a global concern in recent years. In this study, we studied (i) whether the presence of polyvinyl chloride (PVC) microparticles may affect cadmium (Cd) uptake in mussel (Mytilus edulis); and (ii) the biological effects of PVC microparticles exposure alone or in combination with Cd. Significant Cd uptake in digestive gland was observed following Cd exposure. However, PVC did not significantly increase Cd uptake compared with Cd alone treatment. In terms of biological impacts, significantly lower neutral red retention (NRR) time and elevated expression of Metallothionein isoform 20-IV (MT-20) were observed in mussels exposed to Cd alone, or combined with microplastics, yet there was no significant difference between them. catalase (CAT) expression only showed a significant increase in mussels exposed to Cd alone. This work provides an insight into the relationship on resulting biological impacts between these two contaminants

    The mediating role of psychological capital on the association between occupational stress and depressive symptoms among Chinese physicians: a cross-sectional study

    Get PDF
    BACKGROUND: Although occupational stress is an identified predictor of depressive symptoms, the mechanism behind the association is not well understood. The purpose of this study was to examine how psychological capital (PsyCap), a positive psychological state, mediates the association between occupational stress and depressive symptoms among Chinese physicians. METHODS: A cross-sectional survey was conducted in Liaoning Province, China, during September–October 2010. Self-administered questionnaires including items on depressive symptoms assessed by the Center for Epidemiologic Studies Depression Scale, occupational stress assessed by the effort–reward imbalance scale and PsyCap estimated by a 24-item Psychological Capital Questionnaire, together with age, gender, marital status and education were distributed to 1300 physicians employed in large general hospitals. The final sample consisted of 998 participants. Asymptotic and resampling strategies were used to examine how PsyCap mediates the association between occupational stress and depressive symptoms. RESULTS: Both the effort/reward ratio (ERR) and overcommitment were significantly associated with depressive symptoms among male and female physicians. There was a gender difference in the mediating role of PsyCap on the occupational stress–depressive symptoms association. For male physicians, PsyCap did not mediate the association between occupational stress and depressive symptoms. For female physicians, ERR and overcommitment were negatively associated with PsyCap, and PsyCap was negatively associated with depressive symptoms. As a result, PsyCap significantly mediated the associations of ERR and overcommitment with depressive symptoms. The proportion of PsyCap mediation was 19.07% for ERR, and 24.29% for overcommitment. CONCLUSIONS: PsyCap could be a positive resource for combating depressive symptoms in Chinese physicians. In addition to reducing occupational stress, PsyCap development should be included in depression prevention and treatment strategies, especially for female physicians

    Identification of microRNAs Actively Involved in Fatty Acid Biosynthesis in Developing Brassica napus Seeds Using High-Throughput Sequencing

    Get PDF
    Seed development has a critical role during the spermatophyte life cycle. In Brassica napus, a major oil crop, fatty acids are synthesized and stored in specific tissues during embryogenesis, and understanding the molecular mechanism underlying fatty acid biosynthesis during seed development is an important research goal. In this study, we constructed three small RNA libraries from early seeds at 14, 21 and 28 days after flowering (DAF) and used high-throughput sequencing to examine microRNA (miRNA) expression. A total of 85 known miRNAs from 30 families and 1,160 novel miRNAs were identified, of which 24, including 5 known and 19 novel miRNAs, were found to be involved in fatty acid biosynthesis. bna-miR156b, bna-miR156c, bna-miR156g, novel_mir_1706, novel_mir_1407, novel_mir_173, and novel_mir_104 were significantly down-regulated at 21 DAF and 28 DAF, whereas bna-miR159, novel_mir_1081, novel_mir_19 and novel_mir_555 were significantly up-regulated. In addition, we found that some miRNAs regulate functional genes that are directly involved in fatty acid biosynthesis and that other miRNAs regulate the process of fatty acid biosynthesis by acting on a large number of transcription factors. The miRNAs and their corresponding predicted targets were partially validated by quantitative RT-PCR. Our data suggest that diverse and complex miRNAs are involved in the seed development process and that miRNAs play important roles in fatty acid biosynthesis during seed development

    Regularities in simple sequence repeat variations induced by a cross of resynthesized Brassica napus and natural Brassica napus

    Get PDF
    Interspecific hybridization can induce extensive variation in genome sequences, including simple sequence repeat (SSR) regions. To determine the characteristics of SSR variation induced by interspecific hybridization and the possible effect of SSR variation on gene function, we constructed a Brassica napus doubled-haploid (DH) population from a cross between natural B. napus and resynthesized B. napus (B. oleracea Ă— B. rapa) and identified, located, sequenced and functionally annotated SSR variants.The results showed that novel SSR variants were generated in the F generation and maintained in the introgressed DH population. Elimination of sequences carrying SSRs also occurred in the F hybrids, with three times as many sequences lost in the introgressed DH population compared to in the F hybrids, probably due to non-homologous recombination. The degree of SSR variation observed depended primarily on the number of SSR repeats and secondarily on the nucleotide composition of the SSR motifs.In the introgressed DH population, many genes containing SSRs exhibited frameshift mutations (62.5%) due to the expansion or contraction of the SSR motifs following deletion deletion (25%) or insertion (12.5%) mutations.Most genes harboring SSR variants were associated with vital metabolic processes, such as protein or DNA metabolic processes. The SSR variation induced by interspecific hybridization reflects an intrinsic property of species adaptability post-hybridization through variation. This study is beneficial to understanding the origin of SSRs and the effects of SSR mutation on polyploid genomes

    Extensive tRNA gene changes in synthetic Brassica napus

    Get PDF
    Allopolyploidization, where two species come together to form a new species, plays a major role in speciation and genome evolution. Transfer RNAs (abbreviated tRNA) are typically 73-94 nucleotides in length, and are indispensable in protein synthesis, transferring amino acids to the cell protein synthesis machinery (ribosome). To date, the regularity and function of tRNA gene sequence variation during the process of allopolyploidization have not been well understood. In this study, the inter-tRNA gene corresponding to tRNA amplification polymorphism method was used to detect changes in tRNA gene sequences in the progeny of interspecific hybrids between Brassica rapa and B. oleracea, mimicking the original B. napus (canola) species formation event. Cluster analysis showed that tRNA gene variation during allopolyploidization did not appear to have a genotypic basis. Significant variation occurred in the early generations of synthetic B. napus (F and F generations), but fewer alterations were observed in the later generation (F). The variation-prone tRNA genes tended to be located in AT-rich regions. BlastN analysis of novel tRNA gene variants against a Brassica genome sequence database showed that the variation of these tRNA-gene-associated sequences in allopolyploidization might result in variation of gene structure and function, e.g., metabolic process and transport

    Downregulation of Brassica napus MYB69 (BnMYB69) increases biomass growth and disease susceptibility via remodeling phytohormone, chlorophyll, shikimate and lignin levels

    Get PDF
    MYB transcription factors are major actors regulating plant development and adaptability. Brassica napus is a staple oil crop and is hampered by lodging and diseases. Here, four B. napus MYB69 (BnMYB69s) genes were cloned and functionally characterized. They were dominantly expressed in stems during lignification. BnMYB69 RNA interference (BnMYB69i) plants showed considerable changes in morphology, anatomy, metabolism and gene expression. Stem diameter, leaves, roots and total biomass were distinctly larger, but plant height was significantly reduced. Contents of lignin, cellulose and protopectin in stems were significantly reduced, accompanied with decrease in bending resistance and Sclerotinia sclerotiorum resistance. Anatomical detection observed perturbation in vascular and fiber differentiation in stems, but promotion in parenchyma growth, accompanied with changes in cell size and cell number. In shoots, contents of IAA, shikimates and proanthocyanidin were reduced, while contents of ABA, BL and leaf chlorophyll were increased. qRT-PCR revealed changes in multiple pathways of primary and secondary metabolisms. IAA treatment could recover many phenotypes and metabolisms of BnMYB69i plants. However, roots showed trends opposite to shoots in most cases, and BnMYB69i phenotypes were light-sensitive. Conclusively, BnMYB69s might be light-regulated positive regulators of shikimates-related metabolisms, and exert profound influences on various internal and external plant traits

    Gonadal atresia, estrogen-responsive, and apoptosis-specific mRNA expression in marine mussels from the East China coast: a preliminary study

    Get PDF
    This preliminary survey analysed mussel atresia incidences, estrogen-responsive and apoptotic-specific molecular end points, and aqueous and gonadal levels of selected estrogens from the East China coast. Estrogen levels were low (e.g. < LOD-28.36ng/L, < LOD-3.88ng/g wet weight of tissue for BPA) relative to worldwide freshwater environments, but high oocyte follicle atresia incidences (up to 26.6%) occurred at selected sites. Expression of estrogen-responsive ER2 was significantly increased in males relative to females at sites with high atresia incidences in females. A second estrogen-responsive gene, V9, was significantly increased at two sites in April in females relative to males; the opposite was true for the remaining two sites. Apoptosis-specific genes (Bcl-2, fas) showed elevated expression in males relative to females at the site with the highest atresia incidence. These results provide coastal estrogen levels and the utility of several estrogen-specific molecular-level markers for marine mussels

    Genome-Wide Association Study Reveals Both Overlapping and Independent Genetic Loci to Control Seed Weight and Silique Length in Brassica napus

    Get PDF
    Seed weight (SW) is one of three determinants of seed yield, which positively correlates with silique length (SL) in Brassica napus (rapeseed). However, the genetic mechanism underlying the relationship between seed weight (SW) and silique length (SL) is largely unknown at present. A natural population comprising 157 inbred lines in rapeseed was genotyped by whole-genome re-sequencing and investigated for SW and SL over four years. The genome-wide association study identified 20 SNPs in significant association with SW on A01, A04, A09, C02, and C06 chromosomes and the phenotypic variation explained by a single locus ranged from 11.85% to 34.58% with an average of 25.43%. Meanwhile, 742 SNPs significantly associated with SL on A02, A03, A04, A07, A08, A09, C01, C03, C04, C06, C07, and C08 chromosomes were also detected and the phenotypic variation explained by a single locus ranged from 4.01 to 48.02% with an average of 33.33%, out of which, more than half of the loci had not been reported in the previous studies. There were 320 overlapping or linked SNPs for both SW and SL on A04, A09, and C06 chromosomes. It indicated that both overlapping and independent genetic loci controlled both SW and SL in B. napus. On the haplotype block on A09 chromosome, the allele variants of a known gene BnaA.ARF18.a controlling both SW and SL were identified in the natural population by developing derived cleaved amplified polymorphic sequence (dCAPS) markers. These findings are valuable for understanding the genetic mechanism of SW and SL and also for rapeseed molecular breeding programs

    Horizontal gene transfer in plants

    Get PDF
    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components
    • …
    corecore