3,461 research outputs found

    Quasiparticle states around a nonmagnetic impurity in electron-doped iron-based superconductors with spin-density-wave order

    Full text link
    The quasiparticle states around a nonmagnetic impurity in electron-doped iron-based superconductors with spin-density-wave (SDW) order are investigated as a function of doping and impurity scattering strength. In the undoped sample, where a pure SDW state exists, two impurity-induced resonance peaks are observed around the impurity site and they are shifted to higher (lower) energies as the strength of the positive (negative) scattering potential (SP) is increased. For the doped samples where the SDW order and the superconducting order coexist, the main feature is the existence of sharp in-gap resonance peaks whose positions and intensity depend on the strength of the SP and the doping concentration. In all cases, the local density of states exhibits clear C2C_2 symmetry. We also note that in the doped cases, the impurity will divide the system into two sublattices with distinct values of magnetic order. Here we use the band structure of a two-orbital model, which considers the asymmetry of the As atoms above and below the Fe-Fe plane. This model is suitable to study the properties of the surface layers in the iron-pnictides and should be more appropriate to describe the scanning tunneling microscopy experiments.Comment: 11 pages, 18 figure

    A Study of Lateral Bearing Capacity of Pile by Dynamic Test

    Get PDF
    In order to improve the knowledge of the Lateral Loading behavior of artificially drilled cast-in-place concrete piles, the full-scale lateral static and dynamic loading tests of eleven piles had been carried out by the authors in Louyang, China. In this paper, the principle of laterally dynamic pile test is discussed. The results of the static and dynamic tests performed in the light of different diameter piles are analyzed comparatively. It is found that the critical loads defined by the dynamic testing are almost identical with results of the static testing ones. Thus we come to a conclusion that the lateral critical loading of the single pile in the area can be determined by dynamic testing method

    Superfluid density in the s±s_{\pm}-wave state of clean iron-based superconductors

    Full text link
    Based on a phenomenological model and the Kubo formula, we investigate the superfluid density ρs(T)\rho_s(T) and then the penetration depth λ(T)\lambda(T) of the iron-based superconductors in the coexistence region of the spin-density-wave(SDW) and superconductivity, and also in the over-doped region. Our calculations show a dramatic increase of λ(0)\lambda(0) with the decrease of the doping concentration xx below x=0.1x=0.1. This result is consistent with the experimental observations. At low temperatures, ρ(T)\rho(T) shows an exponential-law behavior, while at higher temperatures, the linear-in-TT behavior is dominant before it trends to vanish. The evolution of Δλ(T)\Delta\lambda(T) can be roughly fitted by a exponential function at overdoped levels while in other doping range it is a power-law function with the exponent depending on the doping concentration. We show that the Uemura relation holds for the iron-based superconductors only at very low doping levels.Comment: prl 109 187007 201

    Geothermometry and geobarometry of overpressured lower Paleozoic gas shales in the Jiaoshiba field, Central China: insight from fluid inclusions in fracture cements

    Get PDF
    The Wufeng-Longmaxi organic-rich shales host the largest shale gas fields of China. This study examines sealed fractures within core samples of the Wufeng-Longmaxi shales in the Jiaoshiba shale gas field in order to understand the development of overpressures (in terms of magnitude, timing and burial) in Wufeng-Longmaxi shales and thus the causes of present-day overpressure in these Paleozoic shale formations as well as in all gas shales. Quartz and calcite fracture cements from the Wufeng-Longmaxi shale intervals in four wells at depth intervals between 2253.89 m and 3046.60 m were investigated, and the fluid composition, temperature, and pressure during natural fracture cementation determined using an integrated approach consisting of petrography, Raman spectroscopy and microthermometry. Many crystals in fracture cements were found to contain methane inclusions only, and aqueous two-phase inclusions were consistently observed alongside methane inclusions in all cement samples, indicating that fluid inclusions trapped during fracture cementation are saturated with a methane hydrocarbon fluid. Homogenization temperatures of methane-saturated aqueous inclusions provide trends in trapping temperatures that Th values concentrate in the range of 198.5 °C–229.9 °C, 196.2 °C-221.7 °C for quartz and calcite, respectively. Pore-fluid pressures of 91.8–139.4 MPa for methane inclusions, calculated using the Raman shift of C-H symmetric stretching (v1) band of methane and equations of state for supercritical methane, indicate fluid inclusions trapped at near-lithostatic pressures. High trapping temperature and overpressure conditions in fluid inclusions represent a state of temperature and overpressure of Wufeng-Longmaxi shales at maximum burial and the early stage of the Yanshanian uplift, which can provide a key evidence for understanding the formation and evolution of overpressure. Our results demonstrate that the main cause of present-day overpressure in shale gas deposits is actually the preservation of moderate-high overpressure developed as a result of gas generation at maximum burial depths
    corecore