2,986 research outputs found

    Replica Monte Carlo Simulation (Revisited)

    Full text link
    In 1986, Swendsen and Wang proposed a replica Monte Carlo algorithm for spin glasses [Phys. Rev. Lett. 57 (1986) 2607]. Two important ingredients are present, (1) the use of a collection of systems (replicas) at different of temperatures, but with the same random couplings, (2) defining and flipping clusters. Exchange of information between the systems is facilitated by fixing the tau spin (tau=sigma^1\sigma^2) and flipping the two neighboring systems simultaneously. In this talk, we discuss this algorithm and its relationship to replica exchange (also known as parallel tempering) and Houdayer's cluster algorithm for spin glasses. We review some of the early results obtained using this algorithm. We also present new results for the correlation times of replica Monte Carlo dynamics in two and three dimensions and compare them with replica exchange.Comment: For "Statistical Physics of Disordered Systems and Its Applications", 12-15 July 2004, Shonan Village Center, Hayama, Japan, 7 page

    Nonequilibrium Green's function approach to mesoscopic thermal transport

    Full text link
    We present a formulation of a nonequilibrium Green's function method for thermal current in nanojunction atomic systems with nonlinear interactions. This first-principle approach is applied to the calculation of the thermal conductance in carbon nanotube junctions. It is shown that nonlinearity already becomes important at low temperatures. Nonlinear interactions greatly suppress phonon transmission at room temperature. The peak of thermal conductance is found to be around 400K, in good agreement with experiments. High-order phonon scattering processes are important for diffusive heat transport.Comment: 4 pages, 4 figure

    Interfacial thermal transport in atomic junctions

    Full text link
    We study ballistic interfacial thermal transport across atomic junctions. Exact expressions for phonon transmission coefficients are derived for thermal transport in one-junction and two-junction chains, and verified by numerical calculation based on a nonequilibrium Green's function method. For a single-junction case, we find that the phonon transmission coefficient typically decreases monotonically with increasing freqency. However, in the range between equal frequency spectrum and equal acoustic impedance, it increases first then decreases, which explains why the Kapitza resistance calculated from the acoustic mismatch model is far larger than the experimental values at low temperatures. The junction thermal conductance reaches a maximum when the interfacial coupling equals the harmonic average of the spring constants of the two semi-infinite chains. For three-dimensional junctions, in the weak coupling limit, we find that the conductance is proportional to the square of the interfacial coupling, while for intermediate coupling strength the conductance is approximately proportional to the interfacial coupling strength. For two-junction chains, the transmission coefficient oscillates with the frequency due to interference effects. The oscillations between the two envelop lines can be understood analytically, thus providing guidelines in designing phonon frequency filters.Comment: 10 pages, 13 figures. Accepted by Phys. Rev.

    Semiquantum key distribution using entangled states

    Full text link
    Recently, Boyer et al. presented a novel semiquantum key distribution protocol [M. Boyer, D. Kenigsberg, and T. Mor, Phys. Rev. Lett. 99, 140501 (2007)], by using four quantum states, each of which is randomly prepared by Z basis or X basis. Here we present a semiquantum key distribution protocol by using entangled states in which quantum Alice shares a secret key with classical Bob. We also show the protocol is secure against eavesdropping.Comment: 6 page

    Non-Markovian finite-temperature two-time correlation functions of system operators: beyond the quantum regression theorem

    Full text link
    An extremely useful evolution equation that allows systematically calculating the two-time correlation functions (CF's) of system operators for non-Markovian open (dissipative) quantum systems is derived. The derivation is based on perturbative quantum master equation approach, so non-Markovian open quantum system models that are not exactly solvable can use our derived evolution equation to easily obtain their two-time CF's of system operators, valid to second order in the system-environment interaction. Since the form and nature of the Hamiltonian are not specified in our derived evolution equation, our evolution equation is applicable for bosonic and/or fermionic environments and can be applied to a wide range of system-environment models with any factorized (separable) system-environment initial states (pure or mixed). When applied to a general model of a system coupled to a finite-temperature bosonic environment with a system coupling operator L in the system-environment interaction Hamiltonian, the resultant evolution equation is valid for both L = L^+ and L \neq L^+ cases, in contrast to those evolution equations valid only for L = L^+ case in the literature. The derived equation that generalizes the quantum regression theorem (QRT) to the non-Markovian case will have broad applications in many different branches of physics. We then give conditions on which the QRT holds in the weak system-environment coupling case, and apply the derived evolution equation to a problem of a two-level system (atom) coupled to a finite-temperature bosonic environment (electromagnetic fields) with L \neq L^+.Comment: To appear in the Journal of Chemical Physics (12 pages, 1 figure

    Geometrical effects on spin injection: 3D spin drift diffusion model

    Full text link
    We discuss a three-dimensional (3D) spin drift diffusion (SDD) model to inject spin from a ferromagnet (FM) to a normal metal (N) or semiconductor (SC). Using this model we investigate the problem of spin injection into isotropic materials like GaAs and study the effect of FM contact area and SC thickness on spin injection. We find that in order to achieve detectable spin injection a small contact area or thick SC samples are essential for direct contact spin injection devices. We investigate the use of thin metal films (Cu) proposed by S.B. Kumar et al. and show that they are an excellent substitute for tunnelling barriers (TB) in the regime of small contact area. Since most tunnelling barriers are prone to pinhole defects, we study the effect of pinholes in AlO tunnelling barriers and show that the reduction in the spin-injection ratio (γ\gamma) is solely due to the effective area of the pinholes and there is no correlation between the number of pinholes and the spin injection ratio.Comment: 5 pages, 6 figures. Accepted by JA
    corecore