4,132 research outputs found

    The consistency of estimator under fixed design regression model with NQD errors

    Full text link
    In this article, basing on NQD samples, we investigate the fixed design nonparametric regression model, where the errors are pairwise NQD random errors, with fixed design points, and an unknown function. Nonparametric weighted estimator will be introduced and its consistency is studied. As special case, the consistency result for weighted kernel estimators of the model is obtained. This extends the earlier work on independent random and dependent random errors to NQD case

    Comment on "Chiral Suppression of Scalar Glueball Decay"

    Full text link
    Comment on ``Chiral Suppression of Scalar Glueball Decay''Comment: Comment published in Phys. Rev. Lett. 98, 149103(2007

    Geometric bionics: Lotus effect helps polystyrene nanotube films get good blood compatibility

    Get PDF
    Various biomaterials have been widely used for manufacturing biomedical applications including artificial organs, medical devices and disposable clinical apparatus, such as vascular prostheses, blood pumps, artificial kidney, artificial hearts, dialyzers and plasma separators, which could be used in contact with blood^1^. However, the research tasks of improving hemocompatibility of biomaterials have been carrying out with the development of biomedical requirements^2^. Since the interactions that lead to surface-induced thrombosis occurring at the blood-biomaterial interface become a reason of familiar current complications with grafts therapy, improvement of the blood compatibility of artificial polymer surfaces is, therefore a major issue in biomaterials science^3^. After decades of focused research, various approaches of modifying biomaterial surfaces through chemical or biochemical methods to improve their hemocompatibility were obtained^1^. In this article, we report that polystyrene nanotube films with morphology similar to the papilla on lotus leaf can be used as blood-contacted biomaterials by virtue of Lotus effect^4^. Clearly, this idea, resulting from geometric bionics that mimicking the structure design of lotus leaf, is very novel technique for preparation of hemocompatible biomaterials

    catena-Poly[[trimeth­yl(4-sulfanylphen­yl)aza­nium] [(chloridocadmate)-di-μ-chlorido]]

    Get PDF
    The title compound, {(C9H14NS)[CdCl3]}n, consists of a linear [CdCl3]nn − polyanion and a trimeth­yl(4-sulfanylphen­yl)aza­nium cation. The CdII atom is penta­coordinated by four μ2-Cl atoms and one terminal Cl atom in a trigonal–bipyramidal geometry. The trigonal–bipyramidal units are linked by two opposite shared faces, giving rise to infinite [CdCl3]n chains parallel to the a axis. The cations surround the chain and are linked to them by S—H⋯Cl and C—H⋯Cl hydrogen bonds, forming a three-dimensional network
    corecore