5,822 research outputs found

    Tracking ocean heat uptake during the surface warming hiatus.

    Get PDF
    Ocean heat uptake is observed to penetrate deep into the Atlantic and Southern Oceans during the recent hiatus of global warming. Here we show that the deep heat penetration in these two basins is not unique to the hiatus but is characteristic of anthropogenic warming and merely reflects the depth of the mean meridional overturning circulation in the basin. We find, however, that heat redistribution in the upper 350 m between the Pacific and Indian Oceans is closely tied to the surface warming hiatus. The Indian Ocean shows an anomalous warming below 50 m during hiatus events due to an enhanced heat transport by the Indonesian throughflow in response to the intensified trade winds in the equatorial Pacific. Thus, the Pacific and Indian Oceans are the key regions to track ocean heat uptake during the surface warming hiatus

    Lattice study on ηc2\eta_{c2} and X(3872)

    Full text link
    Properties of 2−+2^{-+} charmonium ηc2\eta_{c2} are investigated in quenched lattice QCD. The mass of ηc2\eta_{c2} is determined to be 3.80(3) GeV, which is close to the mass of DD-wave charmonium ψ(3770)\psi(3770) and in agreement with quark model predictions. The transition width of ηc2→γJ/ψ\eta_{c2}\to \gamma J/\psi is also obtained with a value Γ=3.8(9)\Gamma=3.8(9) keV. Since the possible 2−+2^{-+} assignment to X(3872) has not been ruled out by experiments, our results help to clarify the nature of X(3872).Comment: 15 pages, 8 figures. typos, grammatical errors and some references corrected, redundant discussions deleted, conclusion does not change. published versio

    Investigating the topological structure of quenched lattice QCD with overlap fermions by using multi-probing approximation

    Full text link
    The topological charge density and topological susceptibility are determined by multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density, the results are consistent. Random permuted topological charge density is used to check whether these structures represent underlying ordered properties. Pseudoscalar glueball mass is extracted from the two-point correlation function of the topological charge density. We study 33 ensembles of different lattice spacing aa with the same lattice volume 163×3216^{3}\times32, the results are compatible with the results of all-scale topological charge density, and the topological structures revealed by multi-probing are much closer to all-scale topological charge density than that by eigenmode expansion.Comment: 12 pages,34 figure
    • …
    corecore