8,493 research outputs found
Optimal measurements to access classical correlations of two-qubit states
We analyze the optimal measurements accessing classical correlations in
arbitrary two-qubit states. Two-qubit states can be transformed into the
canonical forms via local unitary operations. For the canonical forms, we
investigate the probability distribution of the optimal measurements. The
probability distribution of the optimal measurement is found to be centralized
in the vicinity of a specific von Neumann measurement, which we call the
maximal-correlation-direction measurement (MCDM). We prove that for the states
with zero-discord and maximally mixed marginals, the MCDM is the very optimal
measurement. Furthermore, we give an upper bound of quantum discord based on
the MCDM, and investigate its performance for approximating the quantum
discord.Comment: 8 pages, 3 figures, version accepted by Phys. Rev.
Collapse simulation of a typical super-tall RC frame-core tube building exposed to extreme fire
The previous fire accidents proofed that reinforced concrete (RC) structures may experience progressive collapse subjected to extreme fires. In consequence, the study on the extreme fire-induced progressive collapse of RC structures is important for the safety of buildings. However, limited study has been performed on the extreme fire-induced progressive collapse of super-tall buildings. In this work, a finite element (FE) model and the corresponding elemental deactivation technology is proposed to simulate the extreme fire-induced progressive collapse of a typical super-tall RC frame-core tube building. The simulation discovered that the collapse of the building is initiated by the flexural failure of perimeter columns because of the thermal expansion of the floor system. The mechanism that discovered can provide a reference for related research of the fire safety of RC buildings
Recommended from our members
Dual blockage of STAT3 and ERK1/2 eliminates radioresistant GBM cells.
Radiotherapy (RT) is the major modality for control of glioblastoma multiforme (GBM), the most aggressive brain tumor in adults with poor prognosis and low patient survival rate. To improve the RT efficacy on GBM, the mechanism causing tumor adaptive radioresistance which leads to the failure of tumor control and lethal progression needs to be further elucidated. Here, we conducted a comparative analysis of RT-treated recurrent tumors versus primary counterparts in GBM patients, RT-treated orthotopic GBM tumors xenografts versus untreated tumors and radioresistant GBM cells versus wild type cells. The results reveal that activation of STAT3, a well-defined redox-sensitive transcriptional factor, is causally linked with GBM adaptive radioresistance. Database analysis also agrees with the worse prognosis in GBM patients due to the STAT3 expression-associated low RT responsiveness. However, although the radioresistant GBM cells can be resensitized by inhibition of STAT3, a fraction of radioresistant cells can still survive the RT combined with STAT3 inhibition or CRISPR/Cas9-mediated STAT3 knockout. A complementally enhanced activation of ERK1/2 by STAT3 inhibition is identified responsible for the survival of the remaining resistant tumor cells. Dual inhibition of ERK1/2 and STAT3 remarkably eliminates resistant GBM cells and inhibits tumor regrowth. These findings demonstrate a previously unknown feature ofSTAT3-mediated ERK1/2 regulation and an effective combination of two targets in resensitizing GBM to RT
- …
