4,426 research outputs found

    Stable sets and mean Li-Yorke chaos in positive entropy systems

    Full text link
    It is shown that in a topological dynamical system with positive entropy, there is a measure-theoretically "rather big" set such that a multivariant version of mean Li-Yorke chaos happens on the closure of the stable or unstable set of any point from the set. It is also proved that the intersections of the sets of asymptotic tuples and mean Li-Yorke tuples with the set of topological entropy tuples are dense in the set of topological entropy tuples respectively.Comment: The final version, reference updated, to appear in Journal of Functional Analysi

    k2U: A General Framework from k-Point Effective Schedulability Analysis to Utilization-Based Tests

    Full text link
    To deal with a large variety of workloads in different application domains in real-time embedded systems, a number of expressive task models have been developed. For each individual task model, researchers tend to develop different types of techniques for deriving schedulability tests with different computation complexity and performance. In this paper, we present a general schedulability analysis framework, namely the k2U framework, that can be potentially applied to analyze a large set of real-time task models under any fixed-priority scheduling algorithm, on both uniprocessor and multiprocessor scheduling. The key to k2U is a k-point effective schedulability test, which can be viewed as a "blackbox" interface. For any task model, if a corresponding k-point effective schedulability test can be constructed, then a sufficient utilization-based test can be automatically derived. We show the generality of k2U by applying it to different task models, which results in new and improved tests compared to the state-of-the-art. Analogously, a similar concept by testing only k points with a different formulation has been studied by us in another framework, called k2Q, which provides quadratic bounds or utilization bounds based on a different formulation of schedulability test. With the quadratic and hyperbolic forms, k2Q and k2U frameworks can be used to provide many quantitive features to be measured, like the total utilization bounds, speed-up factors, etc., not only for uniprocessor scheduling but also for multiprocessor scheduling. These frameworks can be viewed as a "blackbox" interface for schedulability tests and response-time analysis
    • …
    corecore