13,609 research outputs found

    Two-dimensional small-world networks: navigation with local information

    Full text link
    Navigation process is studied on a variant of the Watts-Strogatz small world network model embedded on a square lattice. With probability pp, each vertex sends out a long range link, and the probability of the other end of this link falling on a vertex at lattice distance rr away decays as r−α r^{-\alpha}. Vertices on the network have knowledge of only their nearest neighbors. In a navigation process, messages are forwarded to a designated target. For α<3\alpha <3 and α≠2\alpha \neq 2, a scaling relation is found between the average actual path length and pLpL, where LL is the average length of the additional long range links. Given pL>1pL>1, dynamic small world effect is observed, and the behavior of the scaling function at large enough pLpL is obtained. At α=2\alpha =2 and 3, this kind of scaling breaks down, and different functions of the average actual path length are obtained. For α>3\alpha >3, the average actual path length is nearly linear with network size.Comment: Accepted for publication in Phys. Rev.

    Small-World Network Effect in Competing Glauber- and Kawasaki-type Dynamics

    Full text link
    In this article, we investigate the competing Glauber-type and Kawasaki-type dynamics with small-world network (SWN) effect, in the framework of the Gaussian model. The Glauber-type single-spin transition mechanism with probability p simulates the contact of the system with a heat bath and the Kawasaki-type dynamics with probability 1-p simulates an external energy flux. Two different types of SWN effect are studied, one with the total number of links increased and the other with it conserved. The competition of the dynamics leads to an interesting self-organization process that can be characterized by a phase diagram with two identifiable temperatures. By studying the modification of the phase diagrams, the SWN effect on the two dynamics is analyzed. For the Glauber-type dynamics, more important is the altered average coordination number while the Kawasaki-type dynamics is enhanced by the long range spin interaction and redistribution.Comment: 18 pages, 1 figure. Accepted for publication in "The European Physical Journal B (EPJB)

    Tracking ocean heat uptake during the surface warming hiatus.

    Get PDF
    Ocean heat uptake is observed to penetrate deep into the Atlantic and Southern Oceans during the recent hiatus of global warming. Here we show that the deep heat penetration in these two basins is not unique to the hiatus but is characteristic of anthropogenic warming and merely reflects the depth of the mean meridional overturning circulation in the basin. We find, however, that heat redistribution in the upper 350 m between the Pacific and Indian Oceans is closely tied to the surface warming hiatus. The Indian Ocean shows an anomalous warming below 50 m during hiatus events due to an enhanced heat transport by the Indonesian throughflow in response to the intensified trade winds in the equatorial Pacific. Thus, the Pacific and Indian Oceans are the key regions to track ocean heat uptake during the surface warming hiatus

    Quantum coherence of the molecular states and their corresponding currents in nanoscale Aharonov-Bohm interferometers

    Get PDF
    By considering a nanoscale Aharonov-Bohm (AB) interferometer containing a parrallel-coupled double dot coupled to the source and drain electrodes, we investigate the AB phase oscillations of transport current via the bonding and antibonding state channels. The results we obtained justify the experimental analysis given in [Phys. Rev. Lett. \textbf{106}, 076801 (2011)] that bonding state currents in different energy configurations are almost the same. On the other hand, we extend the analysis to the transient transport current components flowing through different channels, to explore the effect of the parity of bonding and antibonding states on the AB phase dependence of the corresponding current components in the transient regime. The relations of the AB phase dependence between the quantum states and the associated current components are analyzed in details, which provides useful information for the reconstruction of quantum states through the measurement of the transport current in such systems. With the coherent properties in the quantum dot states as well as in the transport currents, we also provide a way to manipulate the bonding and antibonding states by the AB magnetic flux.Comment: 10 pages, 7 figure
    • …
    corecore