760 research outputs found

    Possible singlet and triplet superconductivity on honeycomb lattice

    Full text link
    We study the possible superconducting pairing symmetry mediated by spin and charge fluctuations on the honeycomb lattice using the extended Hubbard model and the random-phase-approximation method. From 2%2\% to 20%20\% doping levels, a spin-singlet dx2−y2+idxyd_{x^{2}-y^{2}}+id_{xy}-wave is shown to be the leading superconducting pairing symmetry when only the on-site Coulomb interaction UU is considered, with the gap function being a mixture of the nearest-neighbor and next-nearest-neighbor pairings. When the offset of the energy level between the two sublattices exceeds a critical value, the most favorable pairing is a spin-triplet ff-wave which is mainly composed of the next-nearest-neighbor pairing. We show that the next-nearest-neighbor Coulomb interaction VV is also in favor of the spin-triplet ff-wave pairing.Comment: 6 pages, 4 figure

    Exposure of the Hidden Anti-Ferromagnetism in Paramagnetic CdSe:Mn Nanocrystals

    Full text link
    We present theoretical and experimental investigations of the magnetism of paramagnetic semiconductor CdSe:Mn nanocrystals and propose an efficient approach to the exposure and analysis of the underlying anti-ferromagnetic interactions between magnetic ions therein. A key advance made here is the build-up of an analysis method with the exploitation of group theory technique that allows us to distinguish the anti-ferromagnetic interactions between aggregative Mn2+ ions from the overall pronounced paramagnetism of magnetic ion doped semiconductor nanocrystals. By using the method, we clearly reveal and identify the signatures of anti-ferromagnetism from the measured temperature dependent magnetisms, and furthermore determine the average number of Mn2+ ions and the fraction of aggregative ones in the measured CdSe:Mn nanocrystals.Comment: 26 pages, 5 figure

    Device modeling of superconductor transition edge sensors based on the two-fluid theory

    Full text link
    In order to support the design and study of sophisticated large scale transition edge sensor (TES) circuits, we use basic SPICE elements to develop device models for TESs based on the superfluid-normal fluid theory. In contrast to previous studies, our device model is not limited to small signal simulation, and it relies only on device parameters that have clear physical meaning and can be easily measured. We integrate the device models in design kits based on powerful EDA tools such as CADENCE and OrCAD, and use them for versatile simulations of TES circuits. Comparing our simulation results with published experimental data, we find good agreement which suggests that device models based on the two-fluid theory can be used to predict the behavior of TES circuits reliably and hence they are valuable for assisting the design of sophisticated TES circuits.Comment: 10pages,11figures. Accepted to IEEE Trans. Appl. Supercon

    Pattern Recognition for Steam Flooding Field Applications based on Hierarchical Clustering and Principal Component Analysis

    Get PDF
    Steam flooding is a complex process that has been considered as an effective enhanced oil recovery technique in both heavy oil and light oil reservoirs. Many studies have been conducted on different sets of steam flooding projects using the conventional data analysis methods, while the implementation of machine learning algorithms to find the hidden patterns is rarely found. In this study, a hierarchical clustering algorithm (HCA) coupled with principal component analysis is used to analyze the steam flooding projects worldwide. The goal of this research is to group similar steam flooding projects into the same cluster so that valuable operational design experiences and production performance from the analogue cases can be referenced for decision-making. Besides, hidden patterns embedded in steam flooding applications can be revealed based on data characteristics of each cluster for different reservoir/fluid conditions. In this research, principal component analysis is applied to project original data to a new feature space, which finds two principal components to represent the eight reservoir/fluid parameters (8D) but still retain about 90% of the variance. HCA is implemented with the optimized design of five clusters, Euclidean distance, and Ward\u27s linkage method. The results of the hierarchical clustering depict that each cluster detects a unique range of each property, and the analogue cases present that fields under similar reservoir/fluid conditions could share similar operational design and production performance
    • …
    corecore