4,654 research outputs found

    QCD Factorization for Spin-Dependent Cross Sections in DIS and Drell-Yan Processes at Low Transverse Momentum

    Get PDF
    Based on a recent work on the quantum chromodynamic (QCD) factorization for semi-inclusive deep-inelastic scattering (DIS), we present a set of factorization formulas for the spin-dependent DIS and Drell-Yan cross sections at low transverse momentum.Comment: 12 pages, two figures include

    Threshold Resummation for Higgs Production in Effective Field Theory

    Full text link
    We present an effective field theory to resum the large double logarithms originated from soft-gluon radiations at small final-state hadron invariant masses in Higgs and vector boson (\gamma^*, WW and ZZ) production at hadron colliders. The approach is conceptually simple, indepaendent of details of an effective field theory formulation, and valid to all orders in sub-leading logarithms. As an example, we show the result of summing the next-to-next-to-next leading logarithms is identical to that of standard pQCD factorization method.Comment: A version to appear in Phys. Rev.

    High Quality Image Interpolation via Local Autoregressive and Nonlocal 3-D Sparse Regularization

    Full text link
    In this paper, we propose a novel image interpolation algorithm, which is formulated via combining both the local autoregressive (AR) model and the nonlocal adaptive 3-D sparse model as regularized constraints under the regularization framework. Estimating the high-resolution image by the local AR regularization is different from these conventional AR models, which weighted calculates the interpolation coefficients without considering the rough structural similarity between the low-resolution (LR) and high-resolution (HR) images. Then the nonlocal adaptive 3-D sparse model is formulated to regularize the interpolated HR image, which provides a way to modify these pixels with the problem of numerical stability caused by AR model. In addition, a new Split-Bregman based iterative algorithm is developed to solve the above optimization problem iteratively. Experiment results demonstrate that the proposed algorithm achieves significant performance improvements over the traditional algorithms in terms of both objective quality and visual perceptionComment: 4 pages, 5 figures, 2 tables, to be published at IEEE Visual Communications and Image Processing (VCIP) 201

    Maximum seismic bending moment of pile foundation based on dimensionless analysis method

    Get PDF
    This paper studied the kinematic bending moment of single fixed-head pile foundation embedded in homogeneous soft clay with different loading levels of superstructure acting on top of the pile during earthquakes. Based on the realization of pile-soil dynamic interaction mechanism discussed in former study, and based on the adequate datum of peak bending moments obtained from centrifuge experiments and complementary ABAQUS simulation, a dimensional analysis was conducted aimed at developing a simple design aids for inexpensively computing the peak bending moments in a pile. It was demonstrated that peak kinematic moments during actual earthquakes can be correlated with a) The pile slenderness ratio, b) Mass ratio of pile to raft, c) Fundamental frequency ratio of pile-raft system to clay bed, d) Mass ratio of the equivalent ground domain to raft, and e) Earthquake intensity, and finally a simple formula presented in this study would lead to generally satisfactory estimates of the largest peak bending moments in actual earthquakes

    Germplasm evaluation for crop improvement: Analysis of grain quality and cadmium accumulation in barley

    Get PDF
    Evaluating genetic variation in barley (Hordeum vulgare) germplasm, combined with genome-wide genotyping, is vital for identifying genes controlling important grain-quality traits. For example, in addition to traditional grain quality properties such as starch and protein contents, grain safety parameters such as heavy metal content, are important in the use of barley for human food and animal feed. A number of genes affecting grain quality have been identified by map-based cloning strategies and functionally analyzed by genetic transformation experiments. Moreover, germplasm evaluation yielded information that enabled the introgression of a key gene controlling grain cadmium accumulation into an elite barley cultivar, reducing the content of this heavy metal in grain. Genotyping of molecular markers and resequencing of germplasm accessions may provide information about how grain quality–related loci evolved and how the current allelic diversity was established. In this review, we describe germplasm resources for barley grain quality–related traits and the methods used to analyze the functions of genes controlling these traits, illustrating cadmium accumulation as an example. We also discuss future directions for the efficient identification of grain quality–related genes.Evaluating genetic variation in barley (Hordeum vulgare) germplasm, combined with genome-wide genotyping, is vital for identifying genes controlling important grain-quality traits. For example, in addition..
    • …
    corecore