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Abstract

Built on a recent work on the quantum chromodynamic (QCD) factorization for semi-inclusive deep-inelastic scattering
(DIS), we present a set of factorization formulas for the spin-dependent DIS and Drell-Yan cross sections at low transverse
momentum. The result can be used to extract transverse-momentum dependent parton distribution and fragmentation functions
from relevant experimental data.

0 2004 Elsevier B.VOpen access under CC BY license,

1. Polarized hard scattering has becoming an important tool to learn about the internal structure of hadrons. In
recent years, inclusive and semi-incltespolarized deep-inelastic scattegi(DIS) has helped to unravel the quark
helicity distributions in the nucleofi]. At present the polarized Relativistic Heavy lon Collider at Brookhaven
National Laboratory is producing data from polarized proton—proton collisions, which will provide a direct mea-
surement of the polarized gluon distributifaj.

An important class of polarized experiments involves measurement of transverse momentum of theepder
For example, in semi-inclusive deep-inelastic scattering (SIDIS) at moderate energy (for example, at HERMES
kinematics), the tagged final-state hadron has a transverse-momentum peaked at a few hundred MeV. In Drell-
Yan process also at moderate center-of-mass energy, Drell-Yan pairs typically have a transverse momentum of
the same order of magnitude. Theoretical study of these processes began with the classical work of Collins and
Soper in which a nearly back-to-back hadron pair is produced it collisions[3]. A factorization theorem for
the process was established, which involves a new class of non-perturbative hadronic observables depending on
the transverse-momentum of hadrons and/or partongrahsverse-momentum dement (TMD) fragmentation
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functions and parton distributions. In a previous publicafinwe have extended the QCD factorization theorem
to the case of the semi-inclusive DIS. The correction to the factorization is on the orééy 6f? and M?/ 02,
where P, is the transverse momentum of the produced hadrom#&nds a hadron mass scale. In this Letter, we
extend factorization further to a class of spin-dependent DIS and Drell-Yan processes. Since the details are similar,
here we focus mostly on the final result, omitting technicalities which can be found in the above references. The
result can be used to extract a new class of TMD parton functions from relevant experimental data, just like the
standard QCD factorization theorems allow extraction of the Feynman parton distributions from hard scattering
data.

Before proceeding future, let us remark that there have been many studies in the literature on the same processe:
at large, but not too large transverse-momentd@mst P, > Agqcp), whereQ is hard-collision scale (for exam-
ple, the virtual-photon mass). In this case, the cross section can in principle be calculated using the conventional
perturbative QCD method with the integrated Feynman parton distributions. However, the hard part contains the
large double logarithms of the typg In? PE/QZ, which must be resummed to make reliable predict[6r8]. The
formalism developed by Collins and Soper in the case'ef~ annihilation[3] and followed in our previous paper,
is ideal for making this type of resummation. In fact, an application to the unpolarized Drell-Yan process was first
made by Collins, Soper and Sterman (C§3) Various applications of CSS formalism to Drell-Yan, heavy boson
productions, and semi-inclusive DIS scaittg have been developed in the literat{8el13].

2. Let us first define a new class of non-perturbative hadronic matrix elements, the spin and transverse-
momentum dependent parton distributions and fragatem functions, which one hopes to learn from high-energy
scattering. As illustrated ifrig. 1, we consider a hadron with momentuPt moving in thez-direction, and is
polarized with a spin vecto§” (dimensionless and - P = 0). In the limit P2 — oo, the P* is proportional
to the light-cone vectop* = A(1,0,0, 1), where A is a mass dimension-1 parameter. The conjugation light-
cone vector ist = (1/24)(1, 0,0, —1), such thatp? = n2 =0 andp - n = 1. We use the light-cone coordinates
k* = (k% + k%)/+/2, and write any four-vectde* in the form of (k~, k) = (k~, k*, k1), wherek, represents two
perpendicular component&*, k”). Let (x P*, k) represent the momentum of a parton (quark or gluon) in the
hadron as shown iig. 1 In a non-singular gauge (e.g., Feynman gauge), the TMD parton distributions can be
defined through the following density matiik4,15]

dé:__e—ixs_P‘*' dZELeiIZLi@
27 (27)2
(PS|¥y (€7,0,b1)LT(+00; £7,0,b1) L, (+00; 0)1, (0)| PS)
SE(b1, 12, p)

wherey, is the quark field, and the Dirac and color indices of the quark fields are implicit+T{e) superscript
is appropriate for DIS (Drell-Yan) procefh,16] v* is a time-like dimensionless{ > 0) four-vector with zero
transverse components™, v*, 0) andv™ > v*. Thus thev* is a quasi-light-cone vector, approachin¢, The
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Fig. 1. Transverse momentum depemidguark distributions in the nucleon.
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variables? denotes the combinatiq@P - v)2/v? = ¢2. L, is a gauge link along*

+o0

EU(:I:oo;é)zexp<—ig / dkv~A(kv+§)>. 2)
0

Here the non-light-like gauge link is introduced to regeldte light-cone singularitiegVe avoid the use of singular
gauges (e.g., the light-cogauge) because in those gauges the gaugmpatmay not vanish at infinity and gauge
links at infinity might be necessary to define gauge-invariant parton distribJyfiéhs

In the above definition, we have derived a soft factor defindd]as

R 1 R R
SE(by, 12 p) = F<0|Cgﬂ(1u, —oo)EIlj(:I:oo; b1)Lyjk(F00; 0)Li; (0; —00)|0), (3)

wherei, j, k,I =1, 2,3 are color indices and new quasi-light-cone vedtor= (7=, v, 6) has been introduced
with o~ <« ©7. The p parameter is defined as= \/v— v+ /vt~ > 1. The above soft factor will also be present
in the factorization theorems below.

The leading order expansion of the density matvixcontains eight quark distributioni$7,18]

1 1 1 - o
M= > [Q(x, ki)p+ Méq(x, k1 )a" kupy + Aqr(x, ki)Aysp + g 2ar(x ki)ysp(kr-S1)
1 , . . e
+ MSQL(x»kL))\lO'quSp k' +d8qr(x,k1)iou,ysp™ S|

1 - o 1- 1
+ 5200 (6, kDo ysp" (lu - SLk - Ekisi) +opar(x, kue“““ﬂyupvkasg] (4)
whereM is the nucleon mass. We have omittedabels and the argumengsand i for the distributions at the
right side of the equation. The convention f@rande-tensor follows that of19]. In principle, there are Lorentz
structures depending art andv*; they can taken to be* and p*, respectively, when no light-cone singularity is
present. The polarization vect8t has been decomposed into a longitudinal compoﬂ%r&nd a transverse one
St

pr M
S“:S‘L‘+S§f=A<ﬁ—?n“)+S“, (5)

where is the helicity. The notations for the distributions follow R@0], which are different than those|jh7,18]

Out of the eight TMD distributions, three of them are associated wittk theven structure under the exchange
ki — —ki:q(x, k1), Aqr(x, k1), anddqgr(x, kL), which correspond to the unpolarized, longitudinal polarized,
and transversity distributions, respectivgil]. These distributions will survive after integrating over transverse
momentum. The other five distributions are associated withcthhedd structures, and hence vanish whean
are integrated. Two of themy (x, k1) anddq (x, k1), are odd under naive time-reversal transformaf#j and
require hadronic final-state interactions to be non-{23p.

If one is interested in production of hadrons, TMD fragmentation functions must be introduced. Following the
above, we define the following density matrix for a quark fragmentation into a (pseudo)scalar hadron

. n~ (dE" d?b  _gee-_f g 1
P =— | e T RPN SN 0| L5 (—00, 0) Y4 (0)| Pa X )y
Miu(z, P, i, /2, p) - / 2 2002 32 (01L5(—=00, 0¥ 54 (0)| Ph X) V5

x (Py X [Vraa (6, B)LLE ™, b, —00)|0)/S(bL, . p), (6)

wheret is mainly along the light-cone direction conjugatingRgp, k* = P,:“/z andk | = —ﬁhL/z, anda=1,2,3
is a color index. The variablgis defined ag 2 = 4(P, - 7)2/42. At leading order, we can have two fragmentation
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functions in the expansion

1f. 1. v
My = E[q(x, P+ M‘SQ(X’ pL)ot PML”V]' )

The second one is (naively) time-reversal odd.
Thek_ -even parton distributions satisfy the same Collins—Soper evolution equation respeetdq[3]

3
C@f(x, b, xg) = (Kb, p) +Gxt, w) f(x,b, u,x¢), (8)

where f = ¢, Aqr, anddqgr, and the sumK + G is independent of ultraviolet scaje. This is because the-
dependence arises from light-cone divergences that are independent of the spin structure. We have verified this
explicitly at one-loop order. Far, -odd distributions, similar equations have not yet been studied in the literature.

3. In[4], afactorization formula has been shown for the cross section of unpolarized semi-inclusive DIS, which
involves the unpolarized TMD parton distributions and fragmentation functions. Let us first extend this result to
polarized semi-inclusive DIS process. Our result is valid up to power correctioﬁ%ﬂ@z, and can be used to
extract the new non-perturbative hadronic matrix elements from relevant experimental data.

The differential cross section for semi-inclusive DIS reads

do 2o,
= = L WHY (P, g, Pp), 9
drgdydz d®Pr 0% O™ ! ©
where the leptonic tensor is
o =2(0M0" + 0 — g 0%)2 — 2inge" Pl tg), (10)

and», is the helicity of the initial lepton¢ and¢’ the initial and final momenta of the leptogy} = ¢/ — ¢’ the
momentum of the virtual photor), the momentum of the observed hadron. As usuglis the Bjorken variable,
y is the fraction of the lepton energy loss, afd = —g2. The hadron tensor has the following expression in QCD

W (P q, Py) = — Z/ P U5 (P S|, (§)1X Py) (X P | J,(0)| PS), (11)

where J" is the electromagnetic current of the quarksrepresents all other final-state hadrons other than the
observed particlé. The variabler, can be definedaB - P, /P -q or P, /q~.

In a coordinate system in which the virtual-photormd hadron momenta areltnear and along the-direction,
the above hadronic tens@*’ has the following leading-twist structures

v

1 . A . A A A A 2
2WHY = —g\" F i + lAzEIW(AFLL + U By Fur) + (81 = B P — BB EGY
+)»thq(l P FUL - vaaﬁSLaﬁhLﬂF( Y
5 2 3 S\
+ (Siaet B — g €S 10 Prig) (F G — F2/2) + BriaeS " BY) (Phs - SOFS, (12)

whereg!" = gh¥ — ptn¥ — p'n¥ ande|” = e“P1V pong, and P, is the unit vector along, | . Fy, 1, arestructure
functionsdepending ot g, z, Pu, andQ?, wherel; represents the polarization of the incident lepton Brithat

of the target hadronl(: unpolarized L: longitudinally-polarized7 : transversely-polarized). For exampl&;
denotes the unpolarized structure functiép,; means the target is transversely polarized while the beam lepton
is unpolarized.
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Substituting the hadronic tensor into the differential cross section, we get

do drays [ 2 E @
= 1—y+y°/2)xp(F;;; + sin(gn — ds)|SL|F,
dxgdydz, 42D, 04 ( y+ye/ ) ( uu UT)

+rey(1—y/2)xp(AFLL + Oy — ¢s)[SLIFLT)
+(1- y)xB( — COS2¢1) F ) + Asin(2gy) FuL + |SL|Sin(@n + ¢s) Fif7
1 - .
+ 51| sin(3y, - ¢S)F((]3}>}, (13)

wheres = (P + )2, andgs ande¢;, are azimuthal angles for the transverse polarization vector of the initial hadron
and the transverse momentum of the final state hadespectively. By studying the angular dependence of the
cross section, one can isolate the different structure functions.

Following [4], we can factorize the structure functions into TMD parton distributions and fragmentation func-

tions, and soft and hard parts. For example, the double polarized structure fuRigtidras the following factor-
ization form

Fro(xB, zn, 0%, Py1)

= Z esfdzlzLdZﬁLdzzLACIL(XB,kL»szxBCvP)‘?(ZthL,Mz,2/Zh7/0)5+(zbl/«2,,0)
q=u,d,s,...

x Hyp(Q%/u?, p)8%(zk i+ p1 + €1 — Pri), (14)

where we have chosen a coordinate system in whick (0?/x2)p and¢? = (0%z2)p. Similarly, we can have
for the other structure functions

2 2k Puipr-Pui—ki-pL . 2@
= I 8(xp. kD84, p1)STADH(0?),

21_<'L~}%M1-1§M—la-l ~ 7
Fyp = / U T PL g1 (ep, k1)8G(zn, p)ST (@ 1) Hyr(02),

ki - lgu P ¢
FLT:./TAQT(XB,M)Q(Z;“PL)S+(£L)HLT(Q2)’
PO _ kL P k1)a ST HH (0
vr = |~y ar(s.k1)q(en, pr)STEL) vr(Q%).
F@_ [PL P k1)8q ST Hyp (02
ur = | 7 0ar(s.k1)3q(zn, p1)ST(EL) vr(29).

e / Ay - Pp1)?pL - Pho —|ki|?pL - Pho — 2Ky - purky - Py
M2 M,
N - 3
x 8q7 (x5, k1)8q(zn. p)ST (L HGH(0?). (15)

where the simple integral symbol repretea complicated integral used above, i.e= [d2%k, d?p, d2(, x

62(zI§L +pL+ ZL — ﬁhL). And for simplicity, we also omit the explicit sum over all flavors weighted with their

charge square, and the expligit p and¢ dependence for the parton distributions and fragmentation functions, as
well as the soft and hard factors.
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From the above factorization forras in the transverse momentum spare,can also obtain the factorization
form in the impact parameter space. For example,

-1
FRb) = ab[(abqr(xB,Zhw)q(Zh b)ST (b HG(07)], (16)

where F(l) (b) = fdzPhL e’PM'b|PM|F( )(PM) and other quantities depending énare obtained from the
Fourier transformation of the correspondlng momentwepeahdent ones. The convolution in transverse momen-
tum space becomes a simple producthie tmpact parameter space, while the moment integral generates a
derivative onb.

An explicit one-loop calculation foFyy and Fr; can be done. The hard parts at one-loop order have the
following form

2
H((Jll)]_HLL_Z—CF[(l—i—In,o)Ing —Inp?+ 2 |n2,02+712—4:|. (17)

To get the next-to-leading order corrections for the hard parts related-tmld distributions, one has to consider
two-loop calculations for scattering off an elementary quark target.

In the above discussions, we consider the factorization of the leading contributions in the expan‘iﬁpf@?.
However, the power corrections in the semi-inclusive [ might have sizable effects at moderg?é range.

They are not included in our factorization formalism. On the other hand, it will be interested to extend our factor-
ization formalism to include the subleading power contributions in SIDIS, just like what have been done for the
subleading power correction to the inclusive DIS and DY cross sed@2dijsThis however is beyond the scope of

the present Letter.

One can apply the above formalism to study the polarizeds sections and asymmetries in the SIDIS, and com-
pare theoretical predictions with experimental measurements if the non-perturbative parton functions are known
from solving non-perturbative QCD. In practice, we can treat them as unknown inputs, and fit to the experimental
data. The parton functions determined phenomenoldgican be used to make predictions for similar processes.
Note that in the TMD quark distributions and fragmentation functions there is a double logarithmic dependence on
the hadron energy (in terms ofih2¢2) which is controlled by the Collins—Soper evolution equations as shown in
Eq.(8). To get the reliable prediction for the cross sections for the SIDIS, one has to solve these evolution equations
to resum the double logarithms. As we showed in the above the Collins—Soper evolutionsiforatien TMD
quark distributions are the same. It will be interested to study the Collins—Soper evolution for all the leading-twist
quark distributions including the, -odd ones. We leave this study in a separate publication.

Let us finally remark on the two special cases related to the above results. The first case concerns cross sections
integrated over the transverse momentum of the hadiaf)sSince the above factorization formulas are valid only
when P, « Q, one cannot use them to integrate outll . To do that, one must have factorization formulas
valid at all P, , including all power corrections. Alternatively, one can prove the factorization theorems in the
Py, -integrated form, which can be done, but is beyond the scope of this Letter.

The second case concerns the region of transverse mometyei < P, < Q. In this region, the above
factorization formula is still valid. However, becauBg, is now hard, all structure functions can be further fac-
torized in terms of ordinary twist-two and twist-three parton distributions. Using Collins and Soper equations, one
can sum over large logarithms of typeln? Q2/Phi. This case, has been studied for examplg h12]. Some of
the relevant leading-order perturbative QCD calculations have been df2f.in

4. In the Drell-Yan processes, we have two hadrons in the initial stdtesid B. We consider the hadron
A moving alongz-direction while B along (— z) dlrect|0n For the TMD parton distributions in hadrén we
introduce another non-light-like vector= (v, 0) (7~ <« o) and the variable 2 = (2Pg - 9)2/72, just like
for the fragmentation functions in DIS. The TMD quark and anti-quark distributions for ha@lrare similar to
those of hadrom.
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We study the production of a lepton pair with low transverse momentum in Drell-Yan process

A(P1, S1) + B(P2,82) » y* (@) + X > T +0” + X, (18)

where P; and P,, S1 andS, are momenta and polarization vectorssoénd B, respectively. The differential cross
sections for ¢~ production reads

2
do Ugm

d4Qd2 ~ 250° Ly WH, (19)

where L, is the leptonic tensor. For the Drell-Yan production, we havé = 4(6’1%5 + K’fﬁ; — g™ 02/2),
where(; is the lepton’s momentuns? is the solid angle of the lepton in the virtual photon rest frapé.is the
momentum of the lepton pais;is the total center-of-mass energy square. The hadronic tensor is defined as

d*e
(2m)%

where J, is the electromagnetic current. Disregarding the contributions fterodd parton distributions, the
leading hadronic tensor can be decomposed into three terms

Wy (x1,x2, Q1, 81, S2) =/ e 715 (P1S1 PSo| J . (8) T, (0)| P1S1 P2S2), (20)

2WH = —g!" (Wo — AMraWrr) — grp Wrr, (1)

whereght = 51, - S11¢"" + SISy + SyS5. The tensor structur@, denotes the unpolarized tensdi, ;. the
double longitudinal polarized tensor, akdy the double transversely polarized tensor. We can choose a frame
that the momenta?{‘, Pz“ and Q* can be decomposed into the following forms

2 2

M M
Plu =pt+ 7}1“, PZM = %n” + —ph, Ot =x1p* +x2%n” + Qﬁ (22)
N
The polarization vectors of hadrons can be decomposed as
WM s M
w p n n n
51 =M<ﬁ— E”“) +S81,, S =l2<ﬁn”—?}7“) + 821 (23)

wherei1 and iz are the helicities of hadroA and B respectively, and;; the relevant transverse polarization
vectors.
Using the hadronic tensor, the differential cross section can be expressed as

do o?
d*Qds2 = 2SQ2{(1+ COSZG)WO(XLXZ» QZ, QJ_) - (1+ COSZG)Al)\zWLL(xl,xZ, QZ, QJ_)
+ sirf 6 cog¢1 + ¢2)|§1L||§2L|Wrr(x1, x2, 0%, 01)}. (24)

whereé is the polar angle of the lepton momentum, @adand¢, are azimuthal angles of the nucleon transverse
spin relative to the lepton planéV;; contributes to double longitudinal spin asymmetry d#igdy to double
transverse spin asymmetries.

Following Ref.[4], we have the following factorization formulas for the above hadronic tensors

Wo(x1,x2, 02 Q1)

62 - N - - -
= >y 3 / d®k1y d®kay d?€1 q(x1.kes. 1% xag. )G (x2. kar. u?, x28, p)S™ (€L, 1% p)
q=u,d,s,...

x Ho(Q2% 12, p)82(kit + kot + €1 — Q1), (25)
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Wrr(x1,x2, 0%, Q1)

(32 - > N _ >
= Z Eq/dzkudzkadzh Aqr(x1 kit 12, x18, p) AGe(x2, kai, 12, x2g, p)S™(E1, 1%, p)
q=u,d,s,...

x Hp(Q% u?, p)82(krs +kot + €1 — O1), (26)
Wrr(x1, x2, 0%, 01)

62 N N - - -
= > 3 / d’k11 d%ka1 dPE Sqr(x, ki, n?, 318, p)8Gr (x2, kai, n?, xaC, p)S™ (€1, 1%, p)
q=u,d,s,...

x Hrr(Q% 12, p)62(kis + kot +01 — 01), (27)

where we have chosen a special coordinate systém: (0%/x2)p and¢? = (0?/x3)p andp = /v= o+ /vt .
The above results are accteaat leading powers iin/Qz) for soft 0 ~ Agcp. Introducing the impact-

parameter space representation, the above factorization formulas become simple products, e.g., for the unpolarizec
tensor

Wo(x1, x2,b, Q%) = )

q=u,d,s,...
The other two hadronic tensors can be obtained similarly.
In the following, we will show that the above factorization formulas are valid at one-loop order, and the relevant
hard parts emerge from the calculation. We first consider the soft factor in the factorization formulas. Since it has

no spin dependence, it contributes equally to all three structure functions. From its definiti@), Bie one-loop
contribution Drell-Yan soft factor is

_ asCr [ A 1)2 1 2 w?
S7(€1, 12 p) = —=-|In -2 — 8%t ) In=|. 29
( 1, Mn IO) 272 |: 0272 :||:£i+)\,2 w8°(€1) 22 ( )
At this order, it is the same as that for the DIS prodd$s

One-loop Feynman diagrams for the Drell-Yan process initiated from a quark and anti-quark pair are shown in

Fig. 2, which contain both virtual and real corrections. The virtual corrections are the same for all three structure
functions

q(x1.b. 12 x18, p)G(x2, b, 12, x28, p)S™ (b, 142 p) Ho(Q? 1%, p). (28)

w |le\)

1 > A
Wo,LL.TT = §5(X1 — 12— DO (1 +2ZF — 1) +2(Z), - D)), (30)

Fig. 2. One-loop corrections to DY processes.
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whereZr andZy come from self-energy and vertewrrrections, respectively.» is the same as that in DIg].
The vertex correction is different

. 2 2 2 2 4 2
zbzl—ﬁcp(nQ—Jrlan +2In—InQ— 4InQ——i>, (31)
4 u? 3

which can be obtained through analyticahtinuation from space-like region{ < 0) to time-like region 2 > 0).
From the above, the one-loop TMD parton distributions, and the soft factor (2B} the one-loop contribution
to the hard parts can be extracted

2
Ho.rr.17(0Q% 12, p) = ;—:TCF[(1+|np )InQ— —Inp?+= |n2p2+2n2—4], (32)

where we have chosen a coordinate system in whi¢h= x»¢ and therefore the dependence on the quasi-light-
like vectorsv andv is simply through a combination= ,/v—9% /vt 9~. Note that the hard parts at this order are
the same for all three structure functions and hence are spin-independent.

The real contributions are different for the three hadronic tensors

62 g7 +x122+m2(L—x0)?  (¢F + 2102 + m2(1—x1)?)2
— -
QL—x)+ qi +x112 + m2(1 — x1)?
P YE R S i }+(x1<—>x2), (33)
q| + 22 qJZ_ + 22
2 2
Wiy = ag:; §(1— xz){ Ztx )Lzl_;::z(l )2 (2;"_:1 _)L2xi(12_(1Xl_+ x)12))2
Itx 1 q; T m *1
T -
(L= x1)+ g2 +x122 + m2(1— x1)?
+o0-x— L 2 } + (x> x2), (34)
24227 g2 +22
Wrr = 6 3(1 XZ){ - 2 : T2 2ad
(I—xD+ g% +x12 24+ m2(L—x1)2 (g2 + x122 + m2(1 — x1)2)2
2
+o =) qi%kg}""(xl‘_)xZ)' (39)

All these results can be reproduced by one-loop parton distributions for the quark and anti-quark and soft factors
discussed before. Therefore, the tattation formulas for the Drell-Yan processes at low transverse momentum
are correct at one-loop order. For an all-order proof, one can follow the same procedure ouflifjed in

Finally, we comment that when the transverseameatum of the lepton pair is large comparedAgcp, but
much smaller tharQ, the above formalism leads to a resummation of double logarithms as in the original paper
by Collins, Soper, and Stermdn]. For spin-dependent part, some studies along this direction can be found in
Refs.[26,27]
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