6,080 research outputs found

    The vortex dynamics of a Ginzburg-Landau system under pinning effect

    Full text link
    It is proved that the vortices are attracted by impurities or inhomogeities in the superconducting materials. The strong H^1-convergence for the corresponding Ginzburg-Landau system is also proved.Comment: 23page

    Chaoization of permanent magnet synchronous motors using stator flux regulation

    Get PDF
    In this paper, a new chaotic permanent magnet synchronous motor (PMSM) drive is proposed and implemented. The key is to apply the stator flux regulation (SFR) based direct torque control to intentionally chaoize the PMSM in such a way that chaotic motion can be resulted. A nonlinear speed controller, namely the sliding mode speed controller, is proposed to generate the torque reference for the torque controller. The proposed method not only offers the desired chaotic motion, but also provides the feature of controllable boundary. Both simulation and experimentation are given to confirm the validity. © 2008 IEEE.published_or_final_versio

    Possible approach to improve sensitivity of a Michelson interferometer

    Full text link
    We propose a possible approach to achieve an 1/N sensitivity of Michelson interferometer by using a properly designed random phase modulation. Different from other approaches, the sensitivity improvement does not depend on increasing optical powers or utilizing the quantum properties of light. Moreover the requirements for optical losses and the quantum efficiencies of photodetection systems might be lower than the quantum approaches and the sensitivity improvement is frequency independent in all detection band.Comment: 8 pages, 3 figures, new versio

    Manipulation of heat current by the interface between graphene and white graphene

    Full text link
    We investigate the heat current flowing across the interface between graphene and hexagonal boron nitride (so-called white graphene) using both molecular dynamics simulation and nonequilibrium Green's function approaches. These two distinct methods discover the same phenomena that the heat current is reduced linearly with increasing interface length, and the zigzag interface causes stronger reduction of heat current than the armchair interface. These phenomena are interpreted by both the lattice dynamics analysis and the transmission function explanation, which both reveal that the localized phonon modes at interfaces are responsible for the heat management. The room temperature interface thermal resistance is about 7×10107\times10^{-10}m2^{2}K/W in zigzag interface and 3.5×10103.5\times10^{-10}m2^{2}K/W in armchair interface, which directly results in stronger heat reduction in zigzag interface. Our theoretical results provide a specific route for experimentalists to control the heat transport in the graphene and hexagonal boron nitride compound through shaping the interface between these two materials.Comment: accepted by EP

    A privacy preserved and credible network protocol

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe identities of packet senders and receivers are treated as important privacy information in communication networks. Any packet can be attributed to its sender for evaluating its credibility. Existing studies mainly rely on third-party agents that contain the packet sender's identity to ensure the sender's privacy preservation and credibility. In this case, packet senders run the risk that their privacy might be leaked by the agent. To this end, this paper proposes a Privacy Preserved and Credible Network Protocol (PCNP), which authorizes the agent to hide the identities of senders and receivers, while guaranteeing the credibility of a packet. The feasibility of the PCNP deployment is analyzed, and its performance is evaluated through extensive experiments.Ministry of Science and Technology of ChinaChinese Academy of Scienc

    A New Method to Calculate Electromagnetic Impedance Matching Degree in One-Layer Microwave Absorbers

    Full text link
    A delta-function method was proposed to quantitatively evaluate the electromagnetic impedance matching degree. Measured electromagnetic parameters of {\alpha}-Fe/Fe3B/Y2O3 nanocomposites are applied to calculate the matching degree by the method. Compared with reflection loss and quarter-wave principle theory, the method accurately reveals the intrinsic mechanism of microwave transmission and reflection properties. A possible honeycomb structure with promising high-performance microwave absorption according to the method is also proposed.Comment: 13 pages, 3 figure

    Structure and stability of quasi-two-dimensional boson-fermion mixtures with vortex-antivortex superposed states

    Full text link
    We investigate the equilibrium properties of a quasi-two-dimensional degenerate boson-fermion mixture (DBFM) with a bosonic vortex-antivortex superposed state (VAVSS) using a quantum-hydrodynamic model. We show that, depending on the choice of parameters, the DBFM with a VAVSS can exhibit rich phase structures. For repulsive boson-fermion (BF) interaction, the Bose-Einstein condensate (BEC) may constitute a petal-shaped "core" inside the honeycomb-like fermionic component, or a ring-shaped joint "shell" around the onion-like fermionic cloud, or multiple segregated "islands" embedded in the disc-shaped Fermi gas. For attractive BF interaction just below the threshold for collapse, an almost complete mixing between the bosonic and fermionic components is formed, where the fermionic component tends to mimic a bosonic VAVSS. The influence of an anharmonic trap on the density distributions of the DBFM with a bosonic VAVSS is discussed. In addition, a stability region for different cases of DBFM (without vortex, with a bosonic vortex, and with a bosonic VAVSS) with specific parameters is given.Comment: 8 pages,5 figure

    Tortoise coordinate and Hawking effect in a dynamical Kerr black hole

    Full text link
    Hawking effect from a dynamical Kerr black hole is investigated using the improved Damour-Ruffini method with a new tortoise coordinate transformation. Hawking temperature of the black hole can be obtained point by point at the event horizon. It is found that Hawking temperatures of different points on the surface are different. Moreover, the temperature does not turn to zero while the dynamical black hole turns to an extreme one.Comment: 7 page
    corecore