26 research outputs found

    Organocatalytic Synthesis of 4‑Aryl-1,2,3,4-tetrahydropyridines from Morita-Baylis-Hillman Carbonates through a One-Pot Three-Component Cyclization

    No full text
    An efficient DABCO-catalyzed three-component formal [3 + 2 + 1] annulation, involving a Morita-Baylis-Hillman carbonate, a 1,3-ketoester, and a primary amine, leading to one-pot synthesis of substituted 4-aryl-1,2,3,4-tetrahydropyridines, has been developed. The densely functionalized products were generally obtained in good to excellent yields under mild conditions. The structures including the relative stereoconfigurations of the representative products were confirmed by X-ray diffraction analysis

    Table5_Individual and combined effects of the GSTM1, GSTT1, and GSTP1 polymorphisms on type 2 diabetes mellitus risk: A systematic review and meta-analysis.doc

    No full text
    Backgrounds: Compared with previously published meta-analyses, this is the first study to investigate the combined effects of glutathione-S-transferase polymorphisms (GSTM1, GSTT1 and GSTP1 IIe105Val) and type 2 diabetes mellitus (T2DM) risk; moreover, the credibility of statistically significant associations was assessed; furthermore, many new original studies were published.Objectives: To determine the relationship between GSTM1, GSTT1, and GSTP1 polymorphisms with T2DM risk.Methods: PubMed, Embase, Wanfang, and China National Knowledge Infrastructure Databases were searched. We quantify the relationship using crude odds ratios and their 95% confidence intervals Moreover, the Venice criteria, false-positive report probability (FPRP), and Bayesian false discovery probability (BFDP) were used to validate the significance of the results.Results: Overall, significantly increased T2DM risk was found between individual and combined effects of GSTM1, GSTT1, and GSTP1 polymorphisms on T2DM risk, but, combined effects of the GSTT1 and GSTP1 polymorphisms was not statistically significant. GSTT1 gene polymorphism significantly increases the risk of T2DM complications, while GSTM1 and GSTP1 polymorphisms had no statistical significance. The GSTM1 null genotype was linked to a particularly increased risk of T2DM in Caucasians; the GSTT1 null genotype was connected to a significantly higher risk of T2DM in Asians and Indians; and the GSTP1 IIe105Val polymorphism was related to a substantially increased T2DM risk in Indians. Moreover, the GSTM1 and GSTT1 double null genotype was associated with substantially increased T2DM risk in Caucasians and Indians; the combined effects of GSTM1 and GSTP1 polymorphisms was associated with higher T2DM risk in Caucasians. However, all significant results were false when the Venice criteria, FPRP, and BFDP test were used (any FPRP >0.2 and BFDP value >0.8).Conclusion: The current analysis strongly suggests that the individual and combined effects of GSTM1, GSTT1 and GSTP1 polymorphisms might not be connected with elevated T2DM risk.</p

    Table8_Individual and combined effects of the GSTM1, GSTT1, and GSTP1 polymorphisms on type 2 diabetes mellitus risk: A systematic review and meta-analysis.xlsx

    No full text
    Backgrounds: Compared with previously published meta-analyses, this is the first study to investigate the combined effects of glutathione-S-transferase polymorphisms (GSTM1, GSTT1 and GSTP1 IIe105Val) and type 2 diabetes mellitus (T2DM) risk; moreover, the credibility of statistically significant associations was assessed; furthermore, many new original studies were published.Objectives: To determine the relationship between GSTM1, GSTT1, and GSTP1 polymorphisms with T2DM risk.Methods: PubMed, Embase, Wanfang, and China National Knowledge Infrastructure Databases were searched. We quantify the relationship using crude odds ratios and their 95% confidence intervals Moreover, the Venice criteria, false-positive report probability (FPRP), and Bayesian false discovery probability (BFDP) were used to validate the significance of the results.Results: Overall, significantly increased T2DM risk was found between individual and combined effects of GSTM1, GSTT1, and GSTP1 polymorphisms on T2DM risk, but, combined effects of the GSTT1 and GSTP1 polymorphisms was not statistically significant. GSTT1 gene polymorphism significantly increases the risk of T2DM complications, while GSTM1 and GSTP1 polymorphisms had no statistical significance. The GSTM1 null genotype was linked to a particularly increased risk of T2DM in Caucasians; the GSTT1 null genotype was connected to a significantly higher risk of T2DM in Asians and Indians; and the GSTP1 IIe105Val polymorphism was related to a substantially increased T2DM risk in Indians. Moreover, the GSTM1 and GSTT1 double null genotype was associated with substantially increased T2DM risk in Caucasians and Indians; the combined effects of GSTM1 and GSTP1 polymorphisms was associated with higher T2DM risk in Caucasians. However, all significant results were false when the Venice criteria, FPRP, and BFDP test were used (any FPRP >0.2 and BFDP value >0.8).Conclusion: The current analysis strongly suggests that the individual and combined effects of GSTM1, GSTT1 and GSTP1 polymorphisms might not be connected with elevated T2DM risk.</p

    Table4_Individual and combined effects of the GSTM1, GSTT1, and GSTP1 polymorphisms on type 2 diabetes mellitus risk: A systematic review and meta-analysis.doc

    No full text
    Backgrounds: Compared with previously published meta-analyses, this is the first study to investigate the combined effects of glutathione-S-transferase polymorphisms (GSTM1, GSTT1 and GSTP1 IIe105Val) and type 2 diabetes mellitus (T2DM) risk; moreover, the credibility of statistically significant associations was assessed; furthermore, many new original studies were published.Objectives: To determine the relationship between GSTM1, GSTT1, and GSTP1 polymorphisms with T2DM risk.Methods: PubMed, Embase, Wanfang, and China National Knowledge Infrastructure Databases were searched. We quantify the relationship using crude odds ratios and their 95% confidence intervals Moreover, the Venice criteria, false-positive report probability (FPRP), and Bayesian false discovery probability (BFDP) were used to validate the significance of the results.Results: Overall, significantly increased T2DM risk was found between individual and combined effects of GSTM1, GSTT1, and GSTP1 polymorphisms on T2DM risk, but, combined effects of the GSTT1 and GSTP1 polymorphisms was not statistically significant. GSTT1 gene polymorphism significantly increases the risk of T2DM complications, while GSTM1 and GSTP1 polymorphisms had no statistical significance. The GSTM1 null genotype was linked to a particularly increased risk of T2DM in Caucasians; the GSTT1 null genotype was connected to a significantly higher risk of T2DM in Asians and Indians; and the GSTP1 IIe105Val polymorphism was related to a substantially increased T2DM risk in Indians. Moreover, the GSTM1 and GSTT1 double null genotype was associated with substantially increased T2DM risk in Caucasians and Indians; the combined effects of GSTM1 and GSTP1 polymorphisms was associated with higher T2DM risk in Caucasians. However, all significant results were false when the Venice criteria, FPRP, and BFDP test were used (any FPRP >0.2 and BFDP value >0.8).Conclusion: The current analysis strongly suggests that the individual and combined effects of GSTM1, GSTT1 and GSTP1 polymorphisms might not be connected with elevated T2DM risk.</p

    Table3_Individual and combined effects of the GSTM1, GSTT1, and GSTP1 polymorphisms on type 2 diabetes mellitus risk: A systematic review and meta-analysis.xlsx

    No full text
    Backgrounds: Compared with previously published meta-analyses, this is the first study to investigate the combined effects of glutathione-S-transferase polymorphisms (GSTM1, GSTT1 and GSTP1 IIe105Val) and type 2 diabetes mellitus (T2DM) risk; moreover, the credibility of statistically significant associations was assessed; furthermore, many new original studies were published.Objectives: To determine the relationship between GSTM1, GSTT1, and GSTP1 polymorphisms with T2DM risk.Methods: PubMed, Embase, Wanfang, and China National Knowledge Infrastructure Databases were searched. We quantify the relationship using crude odds ratios and their 95% confidence intervals Moreover, the Venice criteria, false-positive report probability (FPRP), and Bayesian false discovery probability (BFDP) were used to validate the significance of the results.Results: Overall, significantly increased T2DM risk was found between individual and combined effects of GSTM1, GSTT1, and GSTP1 polymorphisms on T2DM risk, but, combined effects of the GSTT1 and GSTP1 polymorphisms was not statistically significant. GSTT1 gene polymorphism significantly increases the risk of T2DM complications, while GSTM1 and GSTP1 polymorphisms had no statistical significance. The GSTM1 null genotype was linked to a particularly increased risk of T2DM in Caucasians; the GSTT1 null genotype was connected to a significantly higher risk of T2DM in Asians and Indians; and the GSTP1 IIe105Val polymorphism was related to a substantially increased T2DM risk in Indians. Moreover, the GSTM1 and GSTT1 double null genotype was associated with substantially increased T2DM risk in Caucasians and Indians; the combined effects of GSTM1 and GSTP1 polymorphisms was associated with higher T2DM risk in Caucasians. However, all significant results were false when the Venice criteria, FPRP, and BFDP test were used (any FPRP >0.2 and BFDP value >0.8).Conclusion: The current analysis strongly suggests that the individual and combined effects of GSTM1, GSTT1 and GSTP1 polymorphisms might not be connected with elevated T2DM risk.</p

    Table1_Individual and combined effects of the GSTM1, GSTT1, and GSTP1 polymorphisms on type 2 diabetes mellitus risk: A systematic review and meta-analysis.xls

    No full text
    Backgrounds: Compared with previously published meta-analyses, this is the first study to investigate the combined effects of glutathione-S-transferase polymorphisms (GSTM1, GSTT1 and GSTP1 IIe105Val) and type 2 diabetes mellitus (T2DM) risk; moreover, the credibility of statistically significant associations was assessed; furthermore, many new original studies were published.Objectives: To determine the relationship between GSTM1, GSTT1, and GSTP1 polymorphisms with T2DM risk.Methods: PubMed, Embase, Wanfang, and China National Knowledge Infrastructure Databases were searched. We quantify the relationship using crude odds ratios and their 95% confidence intervals Moreover, the Venice criteria, false-positive report probability (FPRP), and Bayesian false discovery probability (BFDP) were used to validate the significance of the results.Results: Overall, significantly increased T2DM risk was found between individual and combined effects of GSTM1, GSTT1, and GSTP1 polymorphisms on T2DM risk, but, combined effects of the GSTT1 and GSTP1 polymorphisms was not statistically significant. GSTT1 gene polymorphism significantly increases the risk of T2DM complications, while GSTM1 and GSTP1 polymorphisms had no statistical significance. The GSTM1 null genotype was linked to a particularly increased risk of T2DM in Caucasians; the GSTT1 null genotype was connected to a significantly higher risk of T2DM in Asians and Indians; and the GSTP1 IIe105Val polymorphism was related to a substantially increased T2DM risk in Indians. Moreover, the GSTM1 and GSTT1 double null genotype was associated with substantially increased T2DM risk in Caucasians and Indians; the combined effects of GSTM1 and GSTP1 polymorphisms was associated with higher T2DM risk in Caucasians. However, all significant results were false when the Venice criteria, FPRP, and BFDP test were used (any FPRP >0.2 and BFDP value >0.8).Conclusion: The current analysis strongly suggests that the individual and combined effects of GSTM1, GSTT1 and GSTP1 polymorphisms might not be connected with elevated T2DM risk.</p

    Table2_Individual and combined effects of the GSTM1, GSTT1, and GSTP1 polymorphisms on type 2 diabetes mellitus risk: A systematic review and meta-analysis.docx

    No full text
    Backgrounds: Compared with previously published meta-analyses, this is the first study to investigate the combined effects of glutathione-S-transferase polymorphisms (GSTM1, GSTT1 and GSTP1 IIe105Val) and type 2 diabetes mellitus (T2DM) risk; moreover, the credibility of statistically significant associations was assessed; furthermore, many new original studies were published.Objectives: To determine the relationship between GSTM1, GSTT1, and GSTP1 polymorphisms with T2DM risk.Methods: PubMed, Embase, Wanfang, and China National Knowledge Infrastructure Databases were searched. We quantify the relationship using crude odds ratios and their 95% confidence intervals Moreover, the Venice criteria, false-positive report probability (FPRP), and Bayesian false discovery probability (BFDP) were used to validate the significance of the results.Results: Overall, significantly increased T2DM risk was found between individual and combined effects of GSTM1, GSTT1, and GSTP1 polymorphisms on T2DM risk, but, combined effects of the GSTT1 and GSTP1 polymorphisms was not statistically significant. GSTT1 gene polymorphism significantly increases the risk of T2DM complications, while GSTM1 and GSTP1 polymorphisms had no statistical significance. The GSTM1 null genotype was linked to a particularly increased risk of T2DM in Caucasians; the GSTT1 null genotype was connected to a significantly higher risk of T2DM in Asians and Indians; and the GSTP1 IIe105Val polymorphism was related to a substantially increased T2DM risk in Indians. Moreover, the GSTM1 and GSTT1 double null genotype was associated with substantially increased T2DM risk in Caucasians and Indians; the combined effects of GSTM1 and GSTP1 polymorphisms was associated with higher T2DM risk in Caucasians. However, all significant results were false when the Venice criteria, FPRP, and BFDP test were used (any FPRP >0.2 and BFDP value >0.8).Conclusion: The current analysis strongly suggests that the individual and combined effects of GSTM1, GSTT1 and GSTP1 polymorphisms might not be connected with elevated T2DM risk.</p

    Table6_Individual and combined effects of the GSTM1, GSTT1, and GSTP1 polymorphisms on type 2 diabetes mellitus risk: A systematic review and meta-analysis.doc

    No full text
    Backgrounds: Compared with previously published meta-analyses, this is the first study to investigate the combined effects of glutathione-S-transferase polymorphisms (GSTM1, GSTT1 and GSTP1 IIe105Val) and type 2 diabetes mellitus (T2DM) risk; moreover, the credibility of statistically significant associations was assessed; furthermore, many new original studies were published.Objectives: To determine the relationship between GSTM1, GSTT1, and GSTP1 polymorphisms with T2DM risk.Methods: PubMed, Embase, Wanfang, and China National Knowledge Infrastructure Databases were searched. We quantify the relationship using crude odds ratios and their 95% confidence intervals Moreover, the Venice criteria, false-positive report probability (FPRP), and Bayesian false discovery probability (BFDP) were used to validate the significance of the results.Results: Overall, significantly increased T2DM risk was found between individual and combined effects of GSTM1, GSTT1, and GSTP1 polymorphisms on T2DM risk, but, combined effects of the GSTT1 and GSTP1 polymorphisms was not statistically significant. GSTT1 gene polymorphism significantly increases the risk of T2DM complications, while GSTM1 and GSTP1 polymorphisms had no statistical significance. The GSTM1 null genotype was linked to a particularly increased risk of T2DM in Caucasians; the GSTT1 null genotype was connected to a significantly higher risk of T2DM in Asians and Indians; and the GSTP1 IIe105Val polymorphism was related to a substantially increased T2DM risk in Indians. Moreover, the GSTM1 and GSTT1 double null genotype was associated with substantially increased T2DM risk in Caucasians and Indians; the combined effects of GSTM1 and GSTP1 polymorphisms was associated with higher T2DM risk in Caucasians. However, all significant results were false when the Venice criteria, FPRP, and BFDP test were used (any FPRP >0.2 and BFDP value >0.8).Conclusion: The current analysis strongly suggests that the individual and combined effects of GSTM1, GSTT1 and GSTP1 polymorphisms might not be connected with elevated T2DM risk.</p
    corecore