5,320 research outputs found

    Searching for Effects of Spatial Noncommutativity via Chern-Simons' Processes

    Get PDF
    The possibility of testing spatial noncommutativity in the case of both position-position and momentum-momentum noncommuting via a Chern-Simons' process is explored. A Chern-Simons process can be realized by an interaction of a charged particle in special crossed electric and magnetic fields, in which the Chern-Simons term leads to non-trivial dynamics in the limit of vanishing kinetic energy. Spatial noncommutativity leads to the spectrum of the orbital angular momentum possessing fractional values. Furthermore, in both limits of vanishing kinetic energy and subsequent vanishing magnetic field, the Chern-Simons term leads to this system having non-trivial dynamics again, and the dominant value of the lowest orbital angular momentum being /4\hbar/4, which is a clear signal of spatial noncommutativity. An experimental verification of this prediction by a Stern-Gerlach-type experiment is suggested.Comment: 18 page

    Heavy baryon spectroscopy in QCD

    Full text link
    We perform a systematic study of the masses of charmed and bottom baryons in the framework of the QCD sum rule approach. Contributions of the operators up to dimension six are included in operator product expansion. The resulting heavy baryon masses from the calculations are well consistent with the experimental values, and predictions to the spectroscopy of the unobserved bottom baryons are also presented.Comment: 14 pages,38 figure

    Doubly heavy baryons in QCD sum rules

    Full text link
    The mass spectra of doubly heavy baryons are systematically calculated in the framework of QCD sum rules. With a tentative heavy-diquark--light-quark configuration, the interpolating currents representing the doubly heavy baryons are proposed. Contributions of the operators up to dimension six are included in operator product expansion. The numerical results are compatible with other theoretical predictions, which may support the (QQ)(q)(QQ)-(q) structure of doubly heavy baryons.Comment: RevTeX 4, 11 pages with 14 eps figures, accepted for publication in Phys. Rev.

    Probing subtle fluorescence dynamics in cellular proteins by streak camera based Fluorescence Lifetime Imaging Microscopy

    Full text link
    We report the cell biological applications of a recently developed multiphoton fluorescence lifetime imaging microscopy system using a streak camera (StreakFLIM). The system was calibrated with standard fluorophore specimens and was shown to have high accuracy and reproducibility. We demonstrate the applicability of this instrument in living cells for measuring the effects of protein targeting and point mutations in the protein sequence which are not obtainable in conventional intensity based fluorescence microscopy methods. We discuss the relevance of such time resolved information in quantitative energy transfer microscopy and in measurement of the parameters characterizing intracellular physiology

    Supersymmetry in Quantum Mechanics of Colored Particles

    Full text link
    The role of supercharge operators is studied in the case of a Dirac particle moving in a constant chromomagnetic field. The Hamiltonian is factorised and the ground state wave function in the case of unbroken supersymmetry is determined.Comment: 8 pages, no figure

    Precision measurement of charge number with optomechanically induced transparency

    Full text link
    We propose a potentially practical scheme to precisely measure the charge numbers of small charged objects by optomechanical systems using optomechanically induced transparency (OMIT). In contrast to the conventional measurements based on the noise backaction on the optomechanical systems, our scheme makes use of the small deformation of the mechanical resonator sensitive to the charge number of the nearby charged object, which could achieve the detection of a single charge. The relationship between the charge number and the window width of the OMIT is investigated and the feasibility of the scheme is justified by numerical simulation using currently available experimental values.Comment: 6 pages,4 figure

    Quark-gluon correlation functions relevant to single transverse spin asymmetries

    Full text link
    We investigate the relative size of various twist-3 quark-gluon correlation functions relevant to single transverse spin asymmetries (SSAs) in a quark-diquark model of the nucleon. We calculate the quark-gluon correlation function Tq,F(x,x)T_{q,F}(x, x) that is responsible for the gluonic pole contribution to the SSAs, as well as Tq,F(0,x)T_{q,F}(0, x) and TΔq,F(0,x)T_{\Delta{q}, F}(0, x) responsible for the fermionic pole contributions. We find in both cases of a scalar diquark and an axial-vector diquark that at the first nontrivial order only the \tq(x, x) is finite while all other quark-gluon correlation functions vanish. Using the same model, we evaluate quark Sivers function and discuss its relation to the \tq(x, x). We also discuss the implication of our finding to the phenomenological studies of the SSAs.Comment: 12 pages, 5 figure

    Isospin dependence of pseudospin symmetry in nuclear resonant states

    Full text link
    The relativistic mean field theory in combination with the analytic continuation in the coupling constant method is used to determine the energies and widths of single-particle resonant states in Sn isotopes. It is shown that there exists clear shell structure in the resonant levels as appearing in the bound levels. In particular, the isospin dependence of pseudospin symmetry is clearly shown in the resonant states, is consistent with that in the bound states, where the splittings of energies and widths between pseudospin doublets are found in correlation with the quantum numbers of single-particle states, as well as the nuclear mass number. The similar phenomenon also emerges in the spin partners.Comment: 7 pages, 6 figure
    corecore