1,441 research outputs found

    Relativistic effect of spin and pseudospin symmetries

    Full text link
    Dirac Hamiltonian is scaled in the atomic units =m=1\hbar =m=1, which allows us to take the non-relativistic limit by setting the Compton wavelength 0% \lambda \rightarrow 0 . The evolutions of the spin and pseudospin symmetries towards the non-relativistic limit are investigated by solving the Dirac equation with the parameter λ\lambda. With λ\lambda transformation from the original Compton wavelength to 0, the spin splittings decrease monotonously in all spin doublets, and the pseudospin splittings increase in several pseudospin doublets, no change, or even reduce in several other pseudospin doublets. The various energy splitting behaviors of both the spin and pseudospin doublets with λ\lambda are well explained by the perturbation calculations of Dirac Hamiltonian in the present units. It indicates that the origin of spin symmetry is entirely due to the relativistic effect, while the origin of pseudospin symmetry cannot be uniquely attributed to the relativistic effect.Comment: 15 pages, 7 figures, accepted by PR

    Godel Metrics with Chronology Protection in Horndeski Gravities

    Full text link
    G\"odel universe, one of the most interesting exact solutions predicted by General Relativity, describes a homogeneous rotating universe containing naked closed time-like curves (CTCs). It was shown that such CTCs are the consequence of the null energy condition in General Relativity. In this paper, we show that the G\"odel-type metrics with chronology protection can emerge in Einstein-Horndeski gravity. We construct such exact solutions also in Einstein-Horndeski-Maxwell and Einstein-Horndeski-Proca theories.Comment: Latex, 11 pages, references adde

    Exposure of the Hidden Anti-Ferromagnetism in Paramagnetic CdSe:Mn Nanocrystals

    Full text link
    We present theoretical and experimental investigations of the magnetism of paramagnetic semiconductor CdSe:Mn nanocrystals and propose an efficient approach to the exposure and analysis of the underlying anti-ferromagnetic interactions between magnetic ions therein. A key advance made here is the build-up of an analysis method with the exploitation of group theory technique that allows us to distinguish the anti-ferromagnetic interactions between aggregative Mn2+ ions from the overall pronounced paramagnetism of magnetic ion doped semiconductor nanocrystals. By using the method, we clearly reveal and identify the signatures of anti-ferromagnetism from the measured temperature dependent magnetisms, and furthermore determine the average number of Mn2+ ions and the fraction of aggregative ones in the measured CdSe:Mn nanocrystals.Comment: 26 pages, 5 figure
    corecore