4 research outputs found

    An Orally Available BACE1 Inhibitor That Affords Robust CNS Aβ Reduction without Cardiovascular Liabilities

    No full text
    BACE1 inhibition to prevent Aβ peptide formation is considered to be a potential route to a disease-modifying treatment for Alzheimer’s disease. Previous efforts in our laboratory using a combined structure- and property-based approach have resulted in the identification of aminooxazoline xanthenes as potent BACE1 inhibitors. Herein, we report further optimization leading to the discovery of inhibitor <b>15</b> as an orally available and highly efficacious BACE1 inhibitor that robustly reduces CSF and brain Aβ levels in both rats and nonhuman primates. In addition, compound <b>15</b> exhibited low activity on the hERG ion channel and was well tolerated in an integrated cardiovascular safety model

    Discovery of CMX990: A Potent SARS-CoV‑2 3CL Protease Inhibitor Bearing a Novel Warhead

    No full text
    There remains a need to develop novel SARS-CoV-2 therapeutic options that improve upon existing therapies by an increased robustness of response, fewer safety liabilities, and global-ready accessibility. Functionally critical viral main protease (Mpro, 3CLpro) of SARS-CoV-2 is an attractive target due to its homology within the coronaviral family, and lack thereof toward human proteases. In this disclosure, we outline the advent of a novel SARS-CoV-2 3CLpro inhibitor, CMX990, bearing an unprecedented trifluoromethoxymethyl ketone warhead. Compared with the marketed drug nirmatrelvir (combination with ritonavir = Paxlovid), CMX990 has distinctly differentiated potency (∼5× more potent in primary cells) and human in vitro clearance (>4× better microsomal clearance and >10× better hepatocyte clearance), with good in vitro-to-in vivo correlation. Based on its compelling preclinical profile and projected once or twice a day dosing supporting unboosted oral therapy in humans, CMX990 advanced to a Phase 1 clinical trial as an oral drug candidate for SARS-CoV-2

    Discovery of CMX990: A Potent SARS-CoV‑2 3CL Protease Inhibitor Bearing a Novel Warhead

    No full text
    There remains a need to develop novel SARS-CoV-2 therapeutic options that improve upon existing therapies by an increased robustness of response, fewer safety liabilities, and global-ready accessibility. Functionally critical viral main protease (Mpro, 3CLpro) of SARS-CoV-2 is an attractive target due to its homology within the coronaviral family, and lack thereof toward human proteases. In this disclosure, we outline the advent of a novel SARS-CoV-2 3CLpro inhibitor, CMX990, bearing an unprecedented trifluoromethoxymethyl ketone warhead. Compared with the marketed drug nirmatrelvir (combination with ritonavir = Paxlovid), CMX990 has distinctly differentiated potency (∼5× more potent in primary cells) and human in vitro clearance (>4× better microsomal clearance and >10× better hepatocyte clearance), with good in vitro-to-in vivo correlation. Based on its compelling preclinical profile and projected once or twice a day dosing supporting unboosted oral therapy in humans, CMX990 advanced to a Phase 1 clinical trial as an oral drug candidate for SARS-CoV-2

    Oxopyrido[2,3‑<i>d</i>]pyrimidines as Covalent L858R/T790M Mutant Selective Epidermal Growth Factor Receptor (EGFR) Inhibitors

    No full text
    In nonsmall cell lung cancer (NSCLC), the threonine<sup>790</sup>–methionine<sup>790</sup> (T790M) point mutation of EGFR kinase is one of the leading causes of acquired resistance to the first generation tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib. Herein, we describe the optimization of a series of 7-oxopyrido­[2,3-<i>d</i>]­pyrimidinyl-derived irreversible inhibitors of EGFR kinase. This led to the discovery of compound <b>24</b> which potently inhibits gefitinib-resistant EGFR<sup>L858R,T790M</sup> with 100-fold selectivity over wild-type EGFR. Compound <b>24</b> displays strong antiproliferative activity against the H1975 nonsmall cell lung cancer cell line, the first line mutant HCC827 cell line, and promising antitumor activity in an EGFR<sup>L858R,T790M</sup> driven H1975 xenograft model sparing the side effects associated with the inhibition of wild-type EGFR
    corecore