3,456 research outputs found

    Energy-efficient Amortized Inference with Cascaded Deep Classifiers

    Full text link
    Deep neural networks have been remarkable successful in various AI tasks but often cast high computation and energy cost for energy-constrained applications such as mobile sensing. We address this problem by proposing a novel framework that optimizes the prediction accuracy and energy cost simultaneously, thus enabling effective cost-accuracy trade-off at test time. In our framework, each data instance is pushed into a cascade of deep neural networks with increasing sizes, and a selection module is used to sequentially determine when a sufficiently accurate classifier can be used for this data instance. The cascade of neural networks and the selection module are jointly trained in an end-to-end fashion by the REINFORCE algorithm to optimize a trade-off between the computational cost and the predictive accuracy. Our method is able to simultaneously improve the accuracy and efficiency by learning to assign easy instances to fast yet sufficiently accurate classifiers to save computation and energy cost, while assigning harder instances to deeper and more powerful classifiers to ensure satisfiable accuracy. With extensive experiments on several image classification datasets using cascaded ResNet classifiers, we demonstrate that our method outperforms the standard well-trained ResNets in accuracy but only requires less than 20% and 50% FLOPs cost on the CIFAR-10/100 datasets and 66% on the ImageNet dataset, respectively

    An Adaptive Neuro-Fuzzy Inference System Based Approach to Real Estate Property Assessment

    Get PDF
    This paper describes a first effort to design and implement an adaptive neuro-fuzzy inference system based approach to estimate prices for residential properties. The data set consists of historic sales of homes in a market in Midwest USA and it contains parameters describing typical residential property features and the actual sale price. The study explores the use of fuzzy inference systems to assess real estate property values and the use of neural networks in creating and fine tuning the fuzzy rules used in the fuzzy inference system. The results are compared with those obtained using a traditional multiple regression model. The paper also describes possible future research in this area.

    Frequency Detection and Change Point Estimation for Time Series of Complex Oscillation

    Full text link
    We consider detecting the evolutionary oscillatory pattern of a signal when it is contaminated by non-stationary noises with complexly time-varying data generating mechanism. A high-dimensional dense progressive periodogram test is proposed to accurately detect all oscillatory frequencies. A further phase-adjusted local change point detection algorithm is applied in the frequency domain to detect the locations at which the oscillatory pattern changes. Our method is shown to be able to detect all oscillatory frequencies and the corresponding change points within an accurate range with a prescribed probability asymptotically. This study is motivated by oscillatory frequency estimation and change point detection problems encountered in physiological time series analysis. An application to spindle detection and estimation in sleep EEG data is used to illustrate the usefulness of the proposed methodology. A Gaussian approximation scheme and an overlapping-block multiplier bootstrap methodology for sums of complex-valued high dimensional non-stationary time series without variance lower bounds are established, which could be of independent interest

    Matrix of Polynomials Model based Polynomial Dictionary Learning Method for Acoustic Impulse Response Modeling

    Get PDF
    We study the problem of dictionary learning for signals that can be represented as polynomials or polynomial matrices, such as convolutive signals with time delays or acoustic impulse responses. Recently, we developed a method for polynomial dictionary learning based on the fact that a polynomial matrix can be expressed as a polynomial with matrix coefficients, where the coefficient of the polynomial at each time lag is a scalar matrix. However, a polynomial matrix can be also equally represented as a matrix with polynomial elements. In this paper, we develop an alternative method for learning a polynomial dictionary and a sparse representation method for polynomial signal reconstruction based on this model. The proposed methods can be used directly to operate on the polynomial matrix without having to access its coefficients matrices. We demonstrate the performance of the proposed method for acoustic impulse response modeling.Comment: 5 pages, 2 figure
    • ā€¦
    corecore