1,911 research outputs found

    Pharmacokinetic/Pharmacodynamic Correlation of Cefquinome Against Experimental Catheter-Associated Biofilm Infection Due to Staphylococcus aureus.

    Get PDF
    Biofilm formations play an important role in Staphylococcus aureus pathogenesis and contribute to antibiotic treatment failures in biofilm-associated infections. The aim of this study was to evaluate the pharmacokinetic/pharmacodynamic (PK/PD) profiles of cefquinome against an experimental catheter-related biofilm model due to S. aureus, including three clinical isolates and one non-clinical isolate. The minimal inhibitory concentration (MIC), minimal biofilm inhibitory concentration (MBIC), biofilm bactericidal concentration (BBC), minimal biofilm eradication concentration (MBEC) and biofilm prevention concentration (BPC) and in vitro time-kill curves of cefquinome were studied in both planktonic and biofilm cells of study S. aureus strains. The in vivo post-antibiotic effects (PAEs), PK profiles and efficacy of cefquinome were performed in the catheter-related biofilm infection model in murine. A sigmoid E max model was utilized to determine the PK/PD index that best described the dose-response profiles in the model. The MICs and MBICs of cefquinome for the four S. aureus strains were 0.5 and 16 μg/mL, respectively. The BBCs (32-64 μg/mL) and MBECs (64-256 μg/mL) of these study strains were much higher than their corresponding BPC values (1-2 μg/mL). Cefquinome showed time-dependent killing both on planktonic and biofilm cells, but produced much shorter PAEs in biofilm infections. The best-correlated PK/PD parameters of cefquinome for planktonic and biofilm cells were the duration of time that the free drug level exceeded the MIC (fT > MIC, R (2) = 96.2%) and the MBIC (fT > MBIC, R (2) = 94.7%), respectively. In addition, the AUC24h/MBIC of cefquinome also significantly correlated with the anti-biofilm outcome in this model (R (2) = 93.1%). The values of AUC24h/MBIC for biofilm-static and 1-log10-unit biofilm-cidal activity were 22.8 and 35.6 h; respectively. These results indicate that the PK/PD profiles of cefquinome could be used as valuable guidance for effective dosing regimens treating S. aureus biofilm-related infections

    miR-638 is a new biomarker for outcome prediction of non-small cell lung cancer patients receiving chemotherapy.

    Get PDF
    MicroRNAs (miRNAs), a class of small non-coding RNAs, mediate gene expression by either cleaving target mRNAs or inhibiting their translation. They have key roles in the tumorigenesis of several cancers, including non-small cell lung cancer (NSCLC). The aim of this study was to investigate the clinical significance of miR-638 in the evaluation of NSCLC patient prognosis in response to chemotherapy. First, we detected miR-638 expression levels in vitro in the culture supernatants of the NSCLC cell line SPC-A1 treated with cisplatin, as well as the apoptosis rates of SPC-A1. Second, serum miR-638 expression levels were detected in vivo by using nude mice xenograft models bearing SPC-A1 with and without cisplatin treatment. In the clinic, the serum miR-638 levels of 200 cases of NSCLC patients before and after chemotherapy were determined by quantitative real-time PCR, and the associations of clinicopathological features with miR-638 expression patterns after chemotherapy were analyzed. Our data helped in demonstrating that cisplatin induced apoptosis of the SPC-A1 cells in a dose- and time-dependent manner accompanied by increased miR-638 expression levels in the culture supernatants. In vivo data further revealed that cisplatin induced miR-638 upregulation in the serum derived from mice xenograft models, and in NSCLC patient sera, miR-638 expression patterns after chemotherapy significantly correlated with lymph node metastasis. Moreover, survival analyses revealed that patients who had increased miR-638 levels after chemotherapy showed significantly longer survival time than those who had decreased miR-638 levels. Our findings suggest that serum miR-638 levels are associated with the survival of NSCLC patients and may be considered a potential independent predictor for NSCLC prognosis

    Fault diagnosis and fault-tolerant control for system with fast time-varying delay

    Get PDF
    This paper proposes a fault diagnosis and fault-tolerant control method for a system with a fast time-varying delay and time-varying parameters. A fault observer is designed to estimate faults, and an improved fast adaptive fault estimation (FAFE) algorithm is developed to reduce the relevant constraints in the general form of this algorithm. With newly introduced relaxation matrices, this study estimates faults in a system exhibiting a fast time-varying delay. Based on the estimated faults, an output feedback controller is designed to accommodate the faults. The fault-tolerant control is realized using the introduced relaxation matrices. An algorithm is derived to solve for the observer and controller. Finally, the theory and method are validated using a real example of a helicopter system

    Pairing Symmetry in Iron-Pnictide Superconductor KFe2_2As2_2

    Full text link
    The pairing symmetry is one of the major issues in the study of iron-based superconductors. We adopt a low-energy effective kinetic model based on the first-principles band structure calculations combined with the J1J_1-J2J_2 model for KFe2_2As2_2, the phase diagram of pairing symmetries is constructed. Putting the values of J1J_1 and J2J_2 of the J1J_1-J2J_2 model obtained by the first-principles calculations into this phase diagram, we find that the pairing symmetry for KFe2_2As2_2 is a nodal dxyd_{xy}-wave in the folded Brillouin zone with two iron atoms per unit cell. This is in good agreement with experiments observed a nodal order parameter.Comment: 5 pages, 4 figures (The pairing symmetry is dependent on choosing an effective tight-binding model. In the publication version, we adopt a ten-orbital model by using the maximally localized Wannier functions based on the first-principles band structure calculations, and give an s-wave pairing for KFe2_2As2_2
    corecore