1,142 research outputs found

    Accelerating AdS black holes as the holographic heat engines in a benchmarking scheme

    Full text link
    We investigate the properties of holographic heat engines with an uncharged accelerating non-rotating AdS black hole as the working substance in a benchmarking scheme. We find that the efficiencies of the black hole heat engines can be influenced by both the size of the benchmark circular cycle and the cosmic string tension as a thermodynamic variable. In general, the efficiency can be increased by enlarging the cycle, but is still constrained by a universal bound 2Ï€/(Ï€+4)2\pi/(\pi+4) as expected. A cross-comparison of the efficiencies of the accelerating black hole heat engines and Schwarzschild-AdS black hole heat engines suggests that the acceleration also increases the efficiency although the amount of increase is not remarkable.Comment: 13 pages,4 figure

    A Galerkin boundary node method and its convergence analysis

    Get PDF
    AbstractThe boundary node method (BNM) exploits the dimensionality of the boundary integral equation (BIE) and the meshless attribute of the moving least-square (MLS) approximations. However, since MLS shape functions lack the property of a delta function, it is difficult to exactly satisfy boundary conditions in BNM. Besides, the system matrices of BNM are non-symmetric.A Galerkin boundary node method (GBNM) is proposed in this paper for solving boundary value problems. In this approach, an equivalent variational form of a BIE is used for representing the governing equation, and the trial and test functions of the variational formulation are generated by the MLS approximation. As a result, boundary conditions can be implemented accurately and the system matrices are symmetric. Total details of numerical implementation and error analysis are given for a general BIE. Taking the Dirichlet problem of Laplace equation as an example, we set up a framework for error estimates of GBNM. Some numerical examples are also given to demonstrate the efficacity of the method

    Performance Evaluation and Modeling of HPC I/O on Non-Volatile Memory

    Full text link
    HPC applications pose high demands on I/O performance and storage capability. The emerging non-volatile memory (NVM) techniques offer low-latency, high bandwidth, and persistence for HPC applications. However, the existing I/O stack are designed and optimized based on an assumption of disk-based storage. To effectively use NVM, we must re-examine the existing high performance computing (HPC) I/O sub-system to properly integrate NVM into it. Using NVM as a fast storage, the previous assumption on the inferior performance of storage (e.g., hard drive) is not valid any more. The performance problem caused by slow storage may be mitigated; the existing mechanisms to narrow the performance gap between storage and CPU may be unnecessary and result in large overhead. Thus fully understanding the impact of introducing NVM into the HPC software stack demands a thorough performance study. In this paper, we analyze and model the performance of I/O intensive HPC applications with NVM as a block device. We study the performance from three perspectives: (1) the impact of NVM on the performance of traditional page cache; (2) a performance comparison between MPI individual I/O and POSIX I/O; and (3) the impact of NVM on the performance of collective I/O. We reveal the diminishing effects of page cache, minor performance difference between MPI individual I/O and POSIX I/O, and performance disadvantage of collective I/O on NVM due to unnecessary data shuffling. We also model the performance of MPI collective I/O and study the complex interaction between data shuffling, storage performance, and I/O access patterns.Comment: 10 page

    High-resolution transport-of-intensity quantitative phase microscopy with annular illumination

    Full text link
    For quantitative phase imaging (QPI) based on transport-of-intensity equation (TIE), partially coherent illumination provides speckle-free imaging, compatibility with brightfield microscopy, and transverse resolution beyond coherent diffraction limit. Unfortunately, in a conventional microscope with circular illumination aperture, partial coherence tends to diminish the phase contrast, exacerbating the inherent noise-to-resolution tradeoff in TIE imaging, resulting in strong low-frequency artifacts and compromised imaging resolution. Here, we demonstrate how these issues can be effectively addressed by replacing the conventional circular illumination aperture with an annular one. The matched annular illumination not only strongly boosts the phase contrast for low spatial frequencies, but significantly improves the practical imaging resolution to near the incoherent diffraction limit. By incorporating high-numerical aperture (NA) illumination as well as high-NA objective, it is shown, for the first time, that TIE phase imaging can achieve a transverse resolution up to 208 nm, corresponding to an effective NA of 2.66. Time-lapse imaging of in vitro Hela cells revealing cellular morphology and subcellular dynamics during cells mitosis and apoptosis is exemplified. Given its capability for high-resolution QPI as well as the compatibility with widely available brightfield microscopy hardware, the proposed approach is expected to be adopted by the wider biology and medicine community.Comment: This manuscript was originally submitted on 20 Feb. 201
    • …
    corecore