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a b s t r a c t

The boundary node method (BNM) exploits the dimensionality of the boundary
integral equation (BIE) and the meshless attribute of the moving least-square (MLS)
approximations. However, since MLS shape functions lack the property of a delta function,
it is difficult to exactly satisfy boundary conditions in BNM. Besides, the system matrices
of BNM are non-symmetric.
A Galerkin boundary node method (GBNM) is proposed in this paper for solving

boundary value problems. In this approach, an equivalent variational form of a BIE is used
for representing the governing equation, and the trial and test functions of the variational
formulation are generated by the MLS approximation. As a result, boundary conditions
can be implemented accurately and the system matrices are symmetric. Total details
of numerical implementation and error analysis are given for a general BIE. Taking the
Dirichlet problem of Laplace equation as an example, we set up a framework for error
estimates of GBNM. Some numerical examples are also given to demonstrate the efficacity
of the method.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the meshless (or meshfree) methods have attached much attention for solving boundary value
problems [1,2]. The main feature of this type of method is the absence of an explicit mesh, and the approximate solutions
are constructed entirely based on a cluster of scattered nodes. Althoughmany types of meshless methods have been already
proposed, these methods can be divided into two categories: the boundary type and the domain type. Several domain type
meshless methods, such as the element free Galerkin method (EFGM) [3], the reproducing kernel particle method [4], the
moving least-square reproducing kernel method [5,6], the finite point method [7] and the h–p meshless method [8] have
achieved remarkable progress in solving a wide range of boundary value problems, and their mathematical backgrounds
were investigated.
Boundary integral equations (BIEs) have beenwidely used for the solution of boundary value problems in potential theory

and engineering. Based on coupling BIEs and themoving least-squares (MLS) approach [9,10],Mukherjee andMukherjee [11]
proposed a boundary type meshless method which they call the boundary node method (BNM). BNM requires only a
nodal structure on the bounding surface of a body for approximation of boundary unknowns. Hence it is an attractive
computational technique for linear problems compared with the domain type meshless methods. However, since the MLS
approximation lacks the delta function property, BNM cannot exactly satisfy boundary conditions. And the strategy used in
BNMto impose boundary conditions doubles the number of systemequations. Xie et al. [12] proposed a radial boundarynode
method (RBNM) to overcome this difficulty by using radial basis functions instead of the MLS to construct the interpolation
functions. Although RBNMhas been applied to the linear elasticity problems, the accuracy of numerical results is affected by
the shape parameters of radial basis functions (e.g. parameters in MQ and Gaussians basis functions [13]), and the optimal
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values of these parameters are still not determined theoretically. Moreover, as BNM, the systemmatrices of RBNM are non-
symmetric, and the theoretical basis is just being studied and far from completion.
In this paper we present a Galerkin boundary node method (GBNM), which based on an equivalent variational form of a

boundary integral formulation for the governing partial differential equation. The key ideas in GBNM are:
1. The MLS approximation is implemented to construct the trial and test functions of the variational form by a cluster of
nodes instead of elements. Thus, the elements division in the boundary element method (BEM) can be avoided.

2. The ‘stiffness’matrices are symmetric, which provides an added advantage in couplingGBNMwith finite elementmethod
(FEM) [14] or other established meshless methods such as EFGM. This coupled technique is especially suited for the
problems with an unbounded domain.

3. Although the shape functions of MLS approximation lack the delta function property, boundary conditions can be
enforced by the variational formulation. Thus the implementation of boundary conditions in this method is much easier
than that in other meshless methods such as in BNM or EFGM, in which the MLS is also introduced.

The rest of this paper is outlined as follows. In Section 2, we introduce some preliminaries to be used later. Section 3 gives
a brief description of the MLS approximation and deduces its error estimates. Then, a detailed numerical implementation of
GBNM is described and the theoretical analysis of this method in Sobolev spaces is provided in the next section. Section 5
provides some numerical tests on theoretical results of the proposed meshless method. Finally, the conclusion is presented
in Section 6.

2. Preliminary

LetΩ be an open bounded domain in R2 with boundary Γ , the complement of Ω̄ = Ω + Γ is denoted byΩ ′. A generic
point in R2 is denoted by x = (x1, x2) or y = (y1, y2).
For any x ∈ Γ , assume that the influence domain of x isR(x)with radius r(x), thenR (x) is a piece of the boundary and

can be represented by a curvilinear co-ordinate (here the arc length) s, i.e.,

R (x(s)) :=
{
y
(
s̃
)
∈ Γ :

∣∣s̃− s∣∣ ≤ r(x)} , (1)
where s̃ is the curvilinear coordinate of the boundary point y.
Obviously, if Γ is a C`Γ curve, it is true thatR(x) is a C`Γ curve, thus ∂mx(s)/∂sm is bounded provided thatm ≤ `Γ .
Let xi ∈ Γ (1 ≤ i ≤ N) be a set of points which are called boundary nodes. On R (x), the curvilinear co-ordinate of

xi ∈ R (x) is denoted by si. Besides, assume that there have κ(x) boundary nodes that lie onR(x). Then, we use the notation
I1, I2, . . . , Iκ to express the global sequence number of these nodes, and define ∧(x) := {I1, I2, . . . , Iκ}.
From (1) the influence domain of xi is

Ri := R (xi(s)) =
{
y
(
s̃
)
∈ Γ :

∣∣s̃− s∣∣ ≤ r (xi)} , 1 ≤ i ≤ N. (2)

It is worth noting that the union of {Ri}Ni=1 should be a finite open covering of Γ , i.e., Γ ⊂
⋃N
i=1Ri.

Besides, we use

Ri := {x ∈ Γ : xi ∈ R(x)} , 1 ≤ i ≤ N, (3)
to denote the set of boundary points whose influence domain including the boundary node xi. For a different boundary point
x, the influence domainR(x) varies from point to point, henceRi ≡ Ri if and only if r(x) is a constant for any x ∈ Γ .
For convenience, we suppose that τ is real and we denote by Hτ (Γ ) the Sobolev spaces as well as their interpolation

spaces on Γ for noninteger τ [15]. Moreover, let m be a nonnegative integer, we define the following weighted Sobolev
spaces [16]

Wmm−1
(
Ω ′
)
:=

{
u ∈ D ′

(
Ω ′
)
:

u
√
1+ r2 ln

(
2+ r2

) ∈ L2 (Ω ′) , (1+ r2)(|λ|−1)/2 Dλu ∈ L2 (Ω ′) , 1 ≤ |λ| ≤ m} ,
where λ = (λ1, λ2), |λ| = λ1 + λ2, and r = |x| represents the distance from the origin to the point x ∈ R2.
The norm inWmm−1

(
Ω ′
)
is defined by

‖u‖Wmm−1(Ω ′) :=

∥∥∥∥∥ u
√
1+ r2 ln

(
2+ r2

)∥∥∥∥∥
2

L2(Ω ′)

+

m∑
|λ|=1

∥∥∥(1+ r2)(|λ|−1)/2 Dλu∥∥∥2
L2(Ω ′)

 1
2

.

Observe that all the local properties of the space Wmm−1(Ω
′) coincide with those of the Sobolev space Hm(Ω ′). As a

consequence, the traces of these functions on Γ satisfy the usual trace theorems.

3. The moving least squares (MLS) method

TheMLS as an approximationmethod has been introduced in [9,10]. Since the numerical approximations of MLS starting
from a cluster of scattered nodes instead of interpolation on elements, there have many meshless methods based on the
MLS method for the numerical solution of differential equations in recent years.
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3.1. The MLS procedure

Assume that x(s) ∈ Γ , the MLS approximation for a given function v onR (x) is defined by

v(x) ≈Mv (x(s)) =
β∑
j=0

Pj(s)aj(s) = PT(s)a(s), (4)

whereM is an approximation operator, aj are coefficients to be determined, P(s) =
[
P0 (s) , P1(s), P2(s), . . . , Pβ(s)

]T is a
vector of the polynomial basis, β + 1 is the number of monomials in the polynomial basis.
In our work, for a given evaluation point x (se) onR(x),

P(s) :=
[
1, s− se,

(
s− se

)2
, . . . ,

(
s− se

)β]T
. (5)

As a matter of fact, s − se is the local relative coordinate of the boundary point s with respect to the evaluation point se.
Hence, when the boundary point is an evaluation point, s− se ≡ 0, and P(s)|s=se = [1, 0, 0, . . . , 0]T.
The coefficient vector a(s) is determined by minimizing a weighted discrete L2 norm, defined as

J(s) =
∑
i∈∧(s)

wi(s)
[
PT (si) a(s)− vi

]2
,

where wi(s) := w(s − si), i ∈ ∧(s), are weight functions which belong to C
`w
0 (Ri), `w ≥ 0, and satisfy wi(s) ≥ 0 and∑N

i=1wi(s) = 1.
The stationary of J(s)with respect to s leads to:

a(s) = A−1(s)B(s)q, (6)

where

[A(s)]jk =
∑
i∈∧(s)

wi(s)Pj(si)Pk(si), 0 ≤ j, k ≤ β, (7)

[B(s)]jk = wIk(s)Pj
(
sIk
)
, 0 ≤ j ≤ β, 1 ≤ k ≤ κ(s), Ik ∈ ∧(s), (8)

qk = vIk , 1 ≤ k ≤ κ(s), Ik ∈ ∧(s). (9)

Substituting (6) into (4) yields

v(x) ≈Mv (x(s)) =
κ(s)∑
k=1

ψk(s)qk, (10)

where

ψk(s) :=
β∑
j=0

Pj(s)
[
A−1 (s) B(s)

]
jk . (11)

Denoted by

Φi(s) :=
{
ψk(s), i = Ik ∈ ∧ (s) ,
0, i 6∈ ∧(s), 1 ≤ i ≤ N, (12)

then (10) can be rewritten as

v(x) ≈Mv(x) =
∑
i∈∧(x)

Φi(x)vi =
N∑
i=1

Φi(x)vi, (13)

which is the MLS approximation for v(x).
Note that in general the MLS approximation do not satisfy the usual interpolation condition, that isMv(si) 6= v(si). In

fact, Lancaster and Salkauskas [9] called this as the non-interpolation interpolant.
In order to make (6) meaningful for any x (s) ∈ Γ , the matrix A(s)must be invertible. In fact, we have [17]:

Proposition 3.1. For any x(s) ∈ Γ , a necessary condition for A(s) to be invertible is that there are at least β boundary nodes
that lie onR (x).

Besides, the MLS shape functions have the following propositions.

Proposition 3.2 ([8]). If Pj ∈ C`p , 0 ≤ j ≤ β , `p ≥ 0 andwi ∈ C`w (Ri), 1 ≤ i ≤ N, `w ≥ 0, thenΦi ∈ Cmin(`p,`w)(Γ ).
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Notation 3.1. In all what follow we will denoted by γ := min
(
`p, `w, `Γ

)
, where `Γ is the continuous order of boundary

curve Γ .

Proposition 3.3 ([6]).
∑
i∈∧(s) D

jΦi (s) (si − s)k = k!δjk, 0 ≤ j ≤ γ , 0 ≤ k ≤ β .

Moreover, from (3) and (12) it follows that:

Proposition 3.4. The MLS shape generating functions have compact supports, namely,Φi (x) ∈ C
γ

0

(
Ri
)
, i ∈ ∧(x).

3.2. Error estimates for the MLS approximation

When the function to be approximated is continuous, Armentano and Duran [18] and Zuppa [19] have obtained error
estimates of MLS approximation in the one dimensional case and higher dimensions, respectively. Since for many cases the
function to be approximated is less regular, it is of importance to establish the rate of convergence for theMLS approximation
in Sobolev spaces under weaker regularity suppositions.
In order to prove some theorems, we impose the following conditions which will be assumed from now on.

Assumption 1. There is a constant h such that h = supx∈Γ {r(x)}, which implies that the radii of any boundary point’s
influence domain is less than h.

Assumption 2. For any x ∈ Γ , there exist nonnegative integers K1 (x) ≥ β and K2 (x) such that there are at least K1(x)
boundary nodes, and at most K2 (x) boundary nodes lie on the influence domain of x.

Assumption 3. For any x(s) ∈ Γ , there are numbers Cwi (x) such that theweight functions satisfyingD
jwi (x) = Cwi (x) h

−j,
0 ≤ j ≤ γ , i ∈ ∧ (x). Besides, there exist constants Cw1 and Cw2 independent with the parameter h such that Cw1 ≤∥∥Cwi (x)∥∥L∞(Γ ) ≤ Cw2, i ∈ ∧ (x).
Lemma 3.1. There exist constants CΦ1 and CΦ2 independent with h such that

CΦ1h−j ≤
∥∥DjΦi (x)∥∥L∞(Γ ) ≤ CΦ2h−j, i ∈ ∧ (x) , 0 ≤ j ≤ γ . (14)

Proof. Since sI ∈ R(s) when I ∈ ∧ (s), we have bounded constants ρI such that sI = se + ρIh, in which se is a given
evaluation point onR(s).
It follows from (5) and (7) that

[A(s)]jk =
∑
I∈∧(s)

wI (s) Pj (sI) Pk (sI) =
∑
I∈∧(s)

wI (s) (ρIh)j+k = hj+kajk (s) , (15)

where 0 ≤ j, k ≤ β and ajk(s) :=
∑
I∈∧(s)wI(s)ρ

j+k
I .

From Assumptions 2 and 3 it is evident that ajk (s) are bounded, thus there exist bounded numbers J (s) and computable
numbers ājk(s) independent with h such that

det (A(s)) = J (s) hβ(β+1), (16)

and [
A−1(s)

]
jk = h

−j−kājk(s), 0 ≤ j, k ≤ β. (17)

Therefore, according to (15) and Assumption 3 we have

Dm [A(s)]jk =
∑
I∈∧(s)

(ρIh)j+k DmwI(s) = hj+k−m
∑
I∈∧(s)

ρ
j+k
I CwI (s) , 0 ≤ m ≤ γ .

Besides, from (8) one gets

[B(s)]ki = wIi(s)Pk
(
sIi
)
= wIi(s)

(
ρIih

)k
, 0 ≤ k ≤ β, 1 ≤ i ≤ κ(s).

Hence using Assumption 3 yields

Dm[B(s)]ki =
(
ρIih

)k DmwIi(s) = hk−mρkIiCwIi (s), 0 ≤ m ≤ γ .

Let

E(s) := A−1(s)B(s), (18)
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then

Dm [E(s)]ji =
β∑
k=0

[
A−1(s)

]
jk

{
Dm [B(s)]ki −

β∑
n=0

m∑
l=1

(
m
l

)
Dl [A(s)]kn Dm−l [E(s)]ni

}

=

β∑
k=0

h−j−kājk (s)

{
hk−mρkIiCwIi (s)−

β∑
n=0

m∑
l=1

(
m
l

)
hk+n−l

∑
I∈∧(s)

ρk+nI CwI (s)D
m−l [E(s)]ni

}

= b0j (s)h
−j−m
−

m∑
l=1

β∑
n=0

(
m
l

)
djn(s)h−j+n−lDm−l [E(s)]ni ,

where 0 ≤ m ≤ γ , 0 ≤ j ≤ β , 1 ≤ i ≤ κ(s), and

b0j (s) :=
β∑
k=0

ājk(s)ρkIiCwIi (s) , 0 ≤ j ≤ β, (19)

djn(s) :=
∑
I∈∧(s)

CwI (s)
β∑
k=0

ρk+nI ājk(s), 0 ≤ j, n ≤ β. (20)

By mathematical induction, we can easily prove that

Dm [E(s)]ji = bmj (s) h
−j−m, 0 ≤ m ≤ γ , (21)

where

bmj (s) := b
0
j (s)−

m∑
l=1

β∑
n=0

(
m
l

)
djn(s)bm−ln (s), 0 ≤ j ≤ β, 1 ≤ m ≤ γ . (22)

Since the evaluation point se is fixed onR(s), there exist real numbers ρe such that s− se = ρeh. Hence from (5),

DmPj(s) = Dm
(
s− se

)j
=


(
j
m

) (
ρeh

)j−m
, j ≥ m,

0, j < m,
0 ≤ m ≤ γ . (23)

Therefore, when 0 ≤ m ≤ γ and 1 ≤ i ≤ κ (s), from (11), (21) and (23) we have

Dmψi(s) = Dm
(

β∑
j=0

Pj(s) [E(s)]ji

)

=

m∑
l=0

(
m
l

) β∑
j=0

DlPj(s)Dm−l [E(s)]ji

=

[
m∑
l=0

(
m
l

) β∑
j=l

(
j
l

) (
ρe
)j−l bm−lj (s)

]
h−m.

From the discussion above we can find that ājk (s), CwI (s) and ρI are bounded, thus b
0
j (s) given by (19) and djn (s) defined

in (20) are bounded. Hence by mathematical induction, bmj (s) are bounded for any 0 ≤ j ≤ β and 1 ≤ m ≤ γ . Besides, from
Assumption 1, it follows that |ρe| < 1. Therefore, there are real numbers Cm1 (x) and Cm2 (x) independent with h such that

Cm1 (x) h−m ≤
∣∣Dmψi (x)∣∣ ≤ Cm2 (x) h−m, ∀ x (s) ∈ Γ , 0 ≤ m ≤ γ ,

then we obtain

Cψ1h−m ≤
∥∥Dmψi (x)∥∥L∞(Γ ) ≤ Cψ2h−m, 0 ≤ m ≤ γ . (24)

The conclusion of the lemma follows readily from (12) and (24).

Remark 3.1. The computable numbers ājk(s) appearing in (17) are really measures of the geometrical quality of the
distribution of nodes {xi}i∈∧(s) and values of weight functions {wi (s)}i∈∧(s) around point x(s). As a result, the constants
CΦ1 and CΦ2 in the inequality (14) are related to the good quality of the set of nodes.

Theorem 3.1. Assume that v(x) ∈ Hm+1 (Γ ), 0 ≤ m ≤ γ . Let

Mv(x) =Mv (x(s)) =
∑
i∈∧(x)

Φi (x) vi, (25)
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then

‖v(x)−Mv (x)‖Hk(Γ ) ≤ Ch
m+1−k

‖v(x)‖Hm+1(Γ ) , 0 ≤ k ≤ m (26)

where C is a constant independent of h.
Proof. Since s is a curvilinear co-ordinate on Γ , we have x

(
s+ θ

(
s̃− s

))
∈ Γ for any x(s) ∈ Rj and x

(
s̃
)
∈ Γ , in which

0 < θ < 1 and 0 ≤ j ≤ N . ThusRj is star-shaped with respect to Γ . Hence from Section 4 of [14], the Taylor polynomial of
degreem of v (x (s)) averaged overRj is

Qm+1j v(s) :=
m∑
l=0

1
l!

∫
Rj

Dlv
(
s̃
) (
s− s̃

)l
φ
(
s̃
)
ds̃, 0 ≤ j ≤ N, (27)

where φ
(
s̃
)
∈ C∞0

(
Rj
)
and satisfying

∫
Rj
φ
(
s̃
)
ds̃ = 1.

The residual term corresponding to (27) is defined as

Rm+1j v(s) := v(s)− Qm+1j v (s) , 0 ≤ j ≤ N,

satisfying [14]∥∥Rm+1j v(s)
∥∥
L∞(Rj)

≤ Chm+1/2 |v(s)|Hm+1(Rj) , 0 ≤ j ≤ N, (28)∣∣Rm+1j v(s)
∣∣
Hk(Rj)

≤ Chm+1−k |v(s)|Hm+1(Rj) , 0 ≤ k ≤ m, 0 ≤ j ≤ N, (29)

in which the constant C depends only onm, and is independent of h.
Besides, for any s ∈ Rj, 0 ≤ j ≤ N , it follows from (25) that

v(s)−Mv(s) = Qm+1j v (s)+ Rm+1j v(s)−
∑
i∈∧(s)

Φi(s)
(
Qm+1j v (si)+ Rm+1j v(si)

)
.

From Proposition 3.3,∑
i∈∧(s)

Φi (s)
(
si − s̃

)l
=

l∑
j=0

(
l
j

) (
s− s̃

)l−j ∑
i∈∧(s)

Φi(s) (si − s)j =
(
s− s̃

)l
,

then ∑
i∈∧(s)

Φi (s)Qm+1j v(si) =
∑
i∈∧(s)

Φi (s)
m∑
l=0

1
l!

∫
Rj

Dlv
(
s̃
) (
si − s̃

)l
φ
(
s̃
)
ds̃

=

m∑
l=0

1
l!

∫
Rj

(∑
i∈∧(s)

Φi (s)
(
si − s̃

)l)Dlv (s̃)φ (s̃) ds̃
= Qm+1j v(s), 0 ≤ j ≤ N.

Thus

|v(s)−Mv(s)|Hk(Rj) ≤
∣∣Rm+1j v(s)

∣∣
Hk(Rj)

+
∥∥Rm+1j v(s)

∥∥
L∞(Rj)

∑
i∈∧(s)

|Φi(s)|Hk(Rj) . (30)

Furthermore, from Lemma 3.1, there is a constant CΦ2 such that

|Φi(s)|2Hk(Rj) =
∫

Rj

∣∣DkΦi(s)∣∣2 ds ≤ ∫
Rj

(
CΦ2h−k

)2
ds ≤ CΦh1−2k.

By Assumption 2, for any x(s) ∈ Γ , there exist nonnegative integers K2(s) and a constant I ∈ ∧(s) such that∑
i∈∧(s)

|Φi(s)|Hk(Rj) ≤ K2(s) |ΦI(s)|Hk(Rj) ≤ Ch
1/2−k, 0 ≤ j ≤ N. (31)

Substituting (28), (29) and (31) into (30), one gets

|v(s)−Mv(s)|Hk(Rj) ≤ Ch
m+1−k

|v(s)|Hm+1(Rj) , 0 ≤ k ≤ m, 0 ≤ j ≤ N.

Hence, applying Assumption 2 yields,

|v (x)−Mv (x)|Hk(Γ ) ≤ Ch
m+1−k

|v (x)|Hm+1(Γ ) , 0 ≤ k ≤ m.

Remark 3.2. Some related results have been obtained in [20] in the context of approximations based on h–p cloud
functions. With the help of the celebrated Jackson-type inequalities, Zuppa have established the error estimates for h–p
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approximations. Although the h–p cloud function considered by Zuppa is different from the MLS shape function, the
convergence order of h–p approximations given in [20] is the same as that ofMLS approximations presented in Theorem 3.1.

Remark 3.3. From Remark 3.1, we can conclude that constants appearing in error estimates of MLS approximations depend
at some extend of the good quality of the covering of weight functions [19].

4. The Galerkin boundary node method (GBNM)

4.1. Galerkin procedures and numerical implementation

Since in BEM, the variational formulation on boundary and coerciveness properties provide the basic mathematical
foundation for rigorous error and convergence analysis, we start with a general boundary integral equation of the form

Av = f , on Γ , (32)
where f ∈ Hτ−2α(Γ ), τ ∈ R, is the given data, 2α is a fixed constant, and A: Hτ (Γ ) → Hτ−2α (Γ ) is a pseudo differential
operator of real order 2α.
In the classical Galerkin method, the weak solution of (32) is determined in [21–23]:{

find v ∈ Hα(Γ ) such that ∀v′ ∈ Hα (Γ ) ,〈
Av, v′

〉
L2(Γ ) =

〈
f , v′

〉
L2(Γ ) .

(33)

In the MLS method, the numerical approximations start from scattered nodes instead of elements. Thus, if the MLS
approximation scheme is used to obtain the approximate solution of problem (33), we can develop a meshless method
in the following way.
Proposition 3.4 indicates thatΦi (x) ∈ C

γ

0

(
Ri
)
, x ∈ Γ , i ∈ ∧ (x), thusΦi (x) ∈ Cγ (Γ ), 1 ≤ i ≤ N . Let

Vh(Γ ) := span {Φi, 1 ≤ i ≤ N} , (34)
where the basis functionsΦi are defined in (12).
Clearly, Φi (x) ∈ Hm (Γ ) ⊂ Hα(Γ ) provided that α ≤ m ≤ γ . Thus, the variational problem (33) can be approximated

by {
find vh ∈ Vh(Γ ) such that ∀v′ ∈ Vh(Γ ),〈
Avh, v′

〉
L2(Γ ) =

〈
f , v′

〉
L2(Γ ) .

(35)

On Vh(Γ ), the Galerkin approximation vh of the real solution v may be written as a linear combination

vh(x) =
∑
i∈∧(x)

Φi (x) vi, (36)

where the coefficients vi are determined by
N∑
i=1

aijvi = fj, 1 ≤ j ≤ N, (37)

with 
aij =

〈
AΦi,Φj

〉
L2(Γ ) =

∫
Γ

AΦi(x) · Φj(x) dSx,

fj =
〈
f ,Φj

〉
L2(Γ ) =

∫
Γ

f (x)Φj (x) dSx.
(38)

From Proposition 3.4, (38) can be rewritten as
aij =

∫
Rj
AΦi(x) · Φj(x) dSx,

fj =
∫

Rj
f (x)Φj (x) dSx.

(39)

Eqs. (39) will now be applied on Rj, which is defined by (3) and is a part of the boundary Γ . The integrations can be
numerically calculated by employing a cell structure as in EFGM and BNM.
The kernel of the operator A may be singular, strongly singular or hypersingular. There are many regularization

procedures to integrate and are available in the literature [24]. Commonly, the first case can be overcome by using special
Gauss points andweights; and the second casemay be simplified as in [25]with the help of a linear geometric representation
for each cell. While for the last case, the special strategies proposed in [25] or [26] can be applied.

Remark 4.1. Note that the cell can be of any shape and the only restriction is that the unions of all cells be equal the integral
area, thus the concept of cell is quite different from that of an element in BEM. As a consequence, GBNM is a boundary-type
meshless method.
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Remark 4.2. By employing the variational formulation of (32), the boundary function f is multiplied by a test function and
integrated on Γ . Thus in GBNM, boundary conditions are implemented exactly despite the MLS shape functions lacking the
delta function property.

4.2. Error estimates

The approximation estimate obtained in Section 3.2 can be used to establish the abstract error bound for the approximate
solutions obtained by using GBNM. In this section, the error estimates of GBNM for solving the boundary integral formula
(32) are presented. For the sake of proving some theorems, we need some lemmas and assumptions.

Lemma 4.1 (Inverse Property). For any vh(x) ∈ Vh(Γ ), we have a constant C independent with the parameter h such that

‖vh(x)‖Hk(Γ ) ≤ Ch
m−k
‖vh (x)‖Hm(Γ ) , −γ ≤ m ≤ k, 0 ≤ k ≤ γ . (40)

Proof. For any x ∈ Γ , it follows from Lemma 3.1 that

|Φi(x)|2Hk(Γ ) =
∫
Γ

∑
|λ|=k

∣∣DλΦi(x)∣∣2 dSx ≤ ∫
Γ

(
Ck2(x)h−k

)2
dSx, 0 ≤ k ≤ γ ,

and

|Φi(x)|2Hm(Γ ) =
∫
Γ

∑
|λ|=m

∣∣DλΦi(x)∣∣2 dSx ≥ ∫
Γ

(
Cm1(x)h−m

)2 dSx, 0 ≤ m ≤ γ .

Hence

|Φi (x)|Hk(Γ ) ≤ Cψh
m−k
|Φi (x)|Hm(Γ ) , i ∈ ∧ (x) , 0 ≤ m ≤ k ≤ γ .

Therefore

‖vh(x)‖Hk(Γ ) ≤ Ch
m−k
‖vh (x)‖Hm(Γ ) , 0 ≤ m ≤ k ≤ γ , (41)

and

‖vh(x)‖Hk(Γ ) ≤ Ch
−k
‖vh (x)‖H0(Γ ) , 0 ≤ k ≤ γ . (42)

On the other hand,

‖vh(x)‖2H0(Γ ) ≤ ‖vh(x)‖Hm(Γ ) ‖vh (x)‖H−m(Γ )

≤ Chm ‖vh(x)‖Hm(Γ ) ‖vh (x)‖H0(Γ ) , −γ ≤ m ≤ 0. (43)

Thus, from (42) and (43) one gets

‖vh(x)‖Hk(Γ ) ≤ Ch
m−k
‖vh (x)‖Hm(Γ ) , −γ ≤ m ≤ 0, 0 ≤ k ≤ γ . (44)

Consequently, the conclusion of the lemma follows from (41) and (44).

Lemma 4.2. Let Sh be a projection from L2(Γ ) onto Vh, then if v (x) ∈ Hm+1 (Γ ), there holds

‖v(x)− Shv (x)‖Hk(Γ ) ≤ Ch
m+1−k

‖v(x)‖Hm+1(Γ ) , (45)

where− (γ + 1) ≤ k ≤ m, 0 ≤ m ≤ γ , and C is a constant independent of h.

Proof. From Theorem 3.1, we have

‖v(x)−Mv (x)‖Hk(Γ ) ≤ Ch
m+1−k

‖v(x)‖Hm+1(Γ ) , 0 ≤ k ≤ m ≤ γ ,

and

‖v(x)− Shv (x)‖H0(Γ ) ≤ ‖v (x)−Mv(x)‖H0(Γ ) ≤ Ch
m+1
‖v (x)‖Hm+1(Γ ) ,

hence using Lemma 4.1 yields

‖v(x)− Shv(x)‖Hk(Γ ) ≤ ‖v(x)−Mv (x)‖Hk(Γ ) + ‖Mv(x)− Shv(x)‖Hk(Γ )
≤ ‖v(x)−Mv (x)‖Hk(Γ ) + Ch

−k
‖Mv(x)− Shv(x)‖H0(Γ )

≤ ‖v(x)−Mv (x)‖Hk(Γ ) + Ch
−k {
‖Mv − v‖H0(Γ ) + ‖v − Shv‖H0(Γ )

}
≤ Chm+1−k ‖v(x)‖Hm+1(Γ ) , 0 ≤ k ≤ m ≤ γ , (46)
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and by a classical duality argument we deduce

‖v(x)− Shv(x)‖H−k(Γ ) = sup
ϕ(x)∈Hk(Γ )

〈v (x)− Shv(x), ϕ (x)〉L2(Γ )
‖ϕ(x)‖Hk(Γ )

= sup
ϕ(x)∈Hk(Γ )

〈v(x)− Shv (x) , ϕ(x)− Shϕ(x)〉L2(Γ )
‖ϕ(x)‖Hk(Γ )

≤ Chm+1+k ‖v (x)‖Hm+1(Γ ) , (47)

for 1 ≤ k ≤ γ + 1 and 0 ≤ m ≤ γ .
When −1 ≤ k ≤ 0, from an interpolation theorem of Sobolev spaces [15] we get

‖v(x)− Shv (x)‖Hk(Γ ) ≤ ‖v(x)− Shv(x)‖
−k
H−1(Γ )

‖v (x)−Mv (x)‖1+kH0(Γ )

≤ Chm+1−k ‖v (x)‖Hm+1(Γ ) , 0 ≤ m ≤ γ . (48)

The proof is completed via (46)–(48). �

Assumption 4. Whenα ≤ τ ≤ γ+1, the boundary integral operator A:Hτ (Γ )→ Hτ−2α (Γ ) is a continuous isomorphism.

Assumption 5. The operator A satisfies the following Gårding inequality

Re 〈(A+ K) v, v〉L2(Γ ) ≥ C ‖v‖
2
Hα(Γ ) , ∀v ∈ H

α(Γ ),

in which K : Hα(Γ )→ H−α(Γ ) is a compact operator, and the constant C > 0.

Via Theorem 3.1, we have the following lemma [21].

Lemma 4.3. Suppose that the variational problem (33) has a unique solution v ∈ Hα(Γ ), then under the conditions of
Assumption 5, we have

sup
06=v′∈Vh

∣∣〈Avh, v′〉∣∣
‖v′‖Hα(Γ )

≥ CB ‖vh‖Hα(Γ ) , CB > 0, ∀vh ∈ Vh. (49)

Besides, there is a constant Cc independent with v and h such that

‖v − vh‖Hα(Γ ) ≤ Cc inf
v′∈Vh

∥∥v − v′∥∥Hα(Γ ) . (50)

We are now in a position to establish the following theorem regarding the convergence of the solution of the approximate
problem (35) to the exact solution of the variational problem (33).

Theorem 4.1 (Asymptotic Error Estimates). Let v(x) and vh(x) be the solutions, respectively, of variational problems (33) and
(35). Then if v (x) ∈ Hm+1(Γ ), we have

‖v(x)− vh (x)‖Hk(Γ ) ≤ Ch
m+1−k

‖v(x)‖Hm+1(Γ ) , (51)

where 2α − γ − 1 ≤ k ≤ m,max {α, 0} ≤ m ≤ γ , and C is a constant independent of h.
Proof. Since Shv (x) ∈ Vh, it follows from (50) and Lemma 4.2 that

‖v − vh‖Hα(Γ ) ≤ Cc ‖v − Shv‖Hα(Γ ) ≤ Ch
m+1−α

‖v‖Hm+1(Γ ) ,max {α, 0} ≤ m ≤ γ .

Let φ(x) be the solution of

Aφ(x) = ϕ (x) , x ∈ Γ ,

then by Assumption 4,

‖φ(x)‖Hτ+2α(Γ ) ≤ C ‖ϕ(x)‖Hτ (Γ ) , −α ≤ τ ≤ γ + 1− 2α.
Besides, from (33) and (35) we obtain〈
A (v − vh) , v′

〉
L2(Γ ) = 0, ∀v

′
∈ Vh.

Thus, by the duality argument we get

‖v − vh‖H−k(Γ ) = sup
ϕ∈Hk(Γ )

〈v − vh, ϕ〉L2(Γ )

‖ϕ‖Hk(Γ )
≤ C sup

φ∈Hk+2α(Γ )

|〈A (v − vh) , φ − Shφ〉|
‖φ‖Hk+2α(Γ )

≤ Chk+α ‖v − vh‖Hα(Γ ) ≤ Ch
m+1+k

‖v‖Hm+1(Γ ) , (52)

for max {−α, 0} ≤ k ≤ γ + 1− 2α,max {α, 0} ≤ m ≤ γ .
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On the other hand, applying Lemmas 4.1 and 4.2 yields

‖v − vh‖Hk(Γ ) ≤ ‖v − Shv‖Hk(Γ ) + ‖Shv − vh‖Hk(Γ )
≤ ‖v − Shv‖Hk(Γ ) + Ch

α−k
‖Shv − vh‖Hα(Γ )

≤ ‖v − Shv‖Hk(Γ ) + Ch
α−k (
‖Shv − v‖Hα(Γ ) + ‖v − vh‖Hα(Γ )

)
≤ Chm+1−k ‖v‖Hm+1(Γ ) , max {α, 0} ≤ k ≤ m ≤ γ . (53)

Let τ1 = −max {−α, 0}, τ2 = max {α, 0}, then when τ1 ≤ k ≤ τ2, we have

‖v − vh‖Hk(Γ ) ≤
(
‖v − vh‖

(k−τ2)
Hτ1 (Γ ) ‖v − vh‖

(τ1−k)
Hτ2 (Γ )

) 1
τ1−τ2

≤ Chm+1−k ‖v‖Hm+1(Γ ) , max {α, 0} ≤ m ≤ γ . (54)

Consequently, the conclusion of the theorem follows from (52)–(54).

4.3. Dirichlet problems

Consider the interior and exterior Dirichlet problem{
∆u = 0, in Ω ∪Ω ′,
u = u0, on Γ , (55)

where u0 is the given boundary data, and u satisfies at infinity the decay condition: |u(x)| = O
(
|x|−1

)
as |x| → ∞.

Let σ be the jump through Γ of the flux ∂u
∂n , where n is the outward normal to the boundary. Then by a generalized

Green’s formula, the solution of problem (55) corresponds to∫
R2
∇u · ∇vdx = 〈σ , v〉Γ , ∀v ∈ W 10 (R

2). (56)

Besides, the solution can be represented by a simple layer potential

u(x) =
∫
Γ

σ (y) u∗ (x, y) dSy, x ∈ R2, (57)

where u∗ (x, y) = − 1
2π ln |x− y| is the fundamental solution of a Laplace operator.

Let

Aσ(x) :=
∫
Γ

σ (y) u∗ (x, y) dSy, x ∈ Γ , (58)

then the order of the operator A is−1. From [21–23,27], the density function σ of (57) can be determined by{
find σ ∈ H−1/2(Γ ) such that ∀σ ′ ∈ H−1/2(Γ ),〈
Aσ , σ ′

〉
L2(Γ ) =

〈
u0, σ ′

〉
L2(Γ ) .

(59)

From (35), the approximate problem of (59) is{
find σh ∈ Vh(Γ ) such that ∀σ ′ ∈ Vh (Γ ) ,〈
Aσh, σ ′

〉
L2(Γ ) =

〈
u0, σ ′

〉
L2(Γ ) ,

(60)

in which Vh(Γ ) is defined by (34).
From [23,27,28], we have the following theorems:

Theorem 4.2. If u0 ∈ Hk(Γ ), k ≥ 1/2, then by the Lax–Milgram theorem, the variational problems (59) and (60) have,
respectively, one and only one solutions σ ∈ Hk−1 (Γ ) and σh ∈ Vh(Γ ), and problem (55) has a unique solution u ∈
Hk+1/2(Ω)×W k+1/2k−1/2

(
Ω ′
)
.

Theorem 4.3. If σ ∈ Hk−1(Γ ), k ≥ 1/2, let u ∈ W 10 (R
2) be the solution of (56), then u|Γ ∈ Hk (Γ ). Besides, the mapping

σ → u|Ω defined by (56) is linear and continuous from Hk−1(Γ ) to Hk+1/2(Ω), and σ → u|Ω ′ is a linear and continuous
mapping from Hk−1 (Γ ) to W k+1/2k−1/2

(
Ω ′
)
.

From Theorems 4.2 and 4.3, it is true that the boundary integral operator A given by (58) satisfies Assumptions 4 and 5.
Thus by Theorem 4.1,

‖σ(x)− σh(x)‖Hk(Γ ) ≤ Ch
m+1−k

‖σ(x)‖Hm+1(Γ ) , (61)

where− (γ + 2) ≤ k ≤ m, 0 ≤ m ≤ γ , and C is a constant independent of h.
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In the following, the convergence order of solving the problem (55) by the presented meshless method will be derived
in energy norms and global maximum norm. Besides, we will deduce the error inside the neighborhood of Γ .

Theorem 4.4 (Energy Norms). Let u(x) given by (57) be the solution of the problem (55), and

uh(x) =
∫
Γ

σh (y) u∗ (x, y) dSy, x ∈ R2, (62)

then there is a constant C independent with h such that

‖u− uh‖W10 (R2) ≤ Ch
m+3/2

‖σ‖Hm+1(Γ ) , 0 ≤ m ≤ γ , (63)

‖u− uh‖H2(Ω) + ‖u− uh‖W21 (Ω ′) ≤ Ch
m+1/2

‖σ‖Hm+1(Γ ) , 1/2 ≤ m ≤ γ . (64)

Proof. The proof follows immediately from Theorem 4.3 with (61). �

Theorem 4.5 (Global Maximum Norm). Let u(x) and uh (x) be given by (57) and (62), respectively. If there exists a constant
δ > 0 such that d(x,Γ ) = miny∈Γ {|x− y|} ≥ δ, then

|u(x)− uh (x)| ≤ C

(
|ln d (x,Γ )| +

γ+2∑
l=1

(d (x,Γ ))−l
)
hm+γ+3 ‖σ(x)‖Hm+1(Γ ) , (65)

∣∣∇λu (x)−∇λuh(x)∣∣ ≤ C (γ+2∑
l=0

(d (x,Γ ))−l−|λ|
)
hm+γ+3 ‖σ(x)‖Hm+1(Γ ) , (66)

where 0 ≤ m ≤ γ , λ = (λ1, λ2), |λ| = λ1 + λ2 ≥ 1, and the constant C is independent of h.

Proof. From (61), we have

|u(x)− uh(x)| =
1
2π

∣∣∣∣∫
Γ

(σ (y)− σh (y)) ln |x− y| dSy

∣∣∣∣
≤ C ‖σ − σh‖H−(γ+2)(Γ ) ‖ln |x− y|‖Hγ+2(Γ ) ,

≤ C

(
|ln d (x,Γ )| +

γ+2∑
l=1

(d (x,Γ ))−l
)
hm+γ+3 ‖σ(x)‖Hm+1(Γ ) .

Similarly,

|∇u(x)−∇uh (x)| =
1
2π

∣∣∣∣∫
Γ

(σ (y)− σh (y))
y− x
|x− y|2

dSy

∣∣∣∣
≤ C

(
γ+2∑
l=0

(d (x,Γ ))−l−1
)
hm+γ+3 ‖σ (x)‖Hm+1(Γ ) .

The proof is now completed via the same type of estimate as for the other derivatives. �

Remark 4.3. Theorem 4.5 obtained the error of u and its derivatives outside the neighborhood ofΓ , which shows extremely
high accuracy can be achieved not only for the primary field variable u but also for its derivatives. Contrary to the case of
the domain type methods, such as the FEM, Theorem 4.5 indicates that the errors of the field function u and its derivatives
in our GBNM are all of the same order.

The following theorem will give the error inside the neighborhood of Γ .

Theorem 4.6. Let u (x) and uh (x) be given by (57) and (62), respectively. There exists δ > 0, for any x ∈ R2 with d (x,Γ ) < δ
and for given ε > 0, we have

|u(x)− uh (x)| ≤ C (δ) hm+1−ε ‖σ‖Hm+1(Γ ) , ε ≤ m ≤ γ , (67)

where the constant C is independent of h and ε.

Proof. If ε > 0, one gets

|u(x)− uh(x)| =
1
2π

∣∣∣∣∫
Γ

(σ (y)− σh (y)) ln |x− y| dSy

∣∣∣∣
≤ C ‖σ − σh‖Hε(Γ ) ‖ln |x− y|‖H−ε(Γ ) . (68)
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Table 1
Problems and solutions.

Example 1 Example 2

Problems
{
∆u = 0, in Ω
u = sin

(
x21 − x

2
2

)
exp (2x1x2) , on Γ

{
∆u = 0, in Ω ′

u =
x1

x21 + x
2
2
, on Γ

Exact solutions u = sin
(
x21 − x

2
2

)
exp (2x1x2) u = x1

x21+x
2
2

For any ε > 0, it follows from (61) that

‖σ − σh‖Hε(Γ ) ≤ Ch
m+1−ε

‖σ‖Hm+1(Γ ) , 0 < ε ≤ m ≤ γ . (69)

Besides, let k = 2
1+ε , then 0 < k < 2. Thus according to the Sobolev imbedding theorem,

L2(Γ ) ↪→ Lk (Γ ) ↪→ H−ε(Γ ). (70)

Let Γ ∗ := {y ∈ Γ ||x− y| < δ } and `x := maxy∈Γ {|x− y|}, then

‖ln |x− y|‖2L2(Γ ) =
∫
Γ /Γ ∗
|ln |x− y||2 dSx +

∫
Γ ∗
|ln |x− y||2 dSx

≤

∫
Γ /Γ ∗

max
{∣∣ln `y∣∣ , |ln δ|}2 dSx + δ |ln δ|2 + 2δ |ln δ| + 2 ∫

Γ ∗
dSx

≤ mes(Γ )
(
max

{∣∣ln `y∣∣ , |ln δ|}2)+ δ |ln δ|2 + 2δ |ln δ| + 2mes(Γ ).
Hence using (70) yields

‖ln |x− y|‖H−ε(Γ ) ≤ C(δ). (71)

Substituting (69) and (71) into (68), the proof is completed. �

Remark 4.4. Since the flux ∂u/∂n is discontinuous through Γ , we cannot obtain the error of |∇u(x)−∇uh (x)| inside the
neighborhood of Γ .

5. Numerical experiments

To demonstrate the validity of our method, we present some numerical experiments. In order to compare the results,
the solutions of the examples under consideration can be found explicitly.
In all examples, the polynomial basis is chosen as a quadratic basis, that is β = 2 in (4). Besides, the weight function is

chosen as the following spline,

w (d) =
{
1− 6d2 + 8d3 − 3d4, d ≤ 1,
0, d > 1,

where d = |x− xi| h, h is the radius of the influence domain of boundary points. In all examples, h is taken to be 2.5d̄, with
d̄ as the nodal spacing.
Assume that Ω = [−1, 1] × [−1, 1], in the following we consider an interior problem and an exterior problem. The

problems and the explicit expressions of the solutions are given in Table 1.
The exact and numerical solutions for u and its derivatives are presented in Figs. 1 and 2. In this analysis, we employed 32

regular distributed nodes on the boundary. Results for potentials are accurate for both examples. The derivatives, however,
indicate considerable error for points close to the boundary. This is the main pitfall of the proposed method and other
methods based onBIEs,whichmaybe overcameby increasing thenumber of boundary nodes in the vicinity of the calculation
point. Anyway, this remains a subject of the further studies.
Numerical results with both random and uniformly distributed nodes are also performed for the two examples. In the

former case, nodes are generated by adding a random perturbation of value 0.30d̄ to a uniform grid with d̄-spacing with
d̄ = 0.125.Maximal absolute errors in both cases are listed in Tables 2 and 3. Comparing two cases for randomand uniformly
spaced nodes, we can see that difference between their results is very small.
To study the convergence of the method, four different regular nodes arrangements of 2, 4, 8 and 16 nodes on each edge

have been used. The convergence rates are plotted with respect to different Sobolev norms in Figs. 3 and 4, which show the
numerical computational is doing better than the estimate.
For investigating the behavior of points far away from the boundary and near the boundary, the values of the numerical

approximations of the potential u and its derivatives at some inner points are given in Tables 4 and 5. In this analysis, the
boundary nodes are equally spaced on the boundary. From the two tables, it is true that the error decreaseswith the decrease
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Fig. 1. Results of u and its derivatives for example 1 along the line x1 = x2 .

Fig. 2. Results of u and its derivatives for example 2 along the line x1 = 3.

Table 2
Maximal absolute errors for example 1.

Node distribution max |u− uh| max
∣∣u,x1 − uh,x1 ∣∣ max

∣∣u,x2 − uh,x2 ∣∣ max
∣∣u,x1x1 − uh,x1x1 ∣∣ max

∣∣u,x2x2 − uh,x2x2 ∣∣
Uniform 8.6625E−5 2.4062E−3 2.4062E−3 3.7285E−2 3.7285E−2
Random 1.5924E−4 3.0456E−3 3.0456E−3 6.9859E−2 6.9859E−2

Table 3
Maximal absolute errors for example 2.

Node distribution max |u− uh| max
∣∣u,x1 − uh,x1 ∣∣ max

∣∣u,x2 − uh,x2 ∣∣ max
∣∣u,x1x1 − uh,x1x1 ∣∣ max

∣∣u,x2x2 − uh,x2x2 ∣∣
Uniform 2.2056E−5 1.8465E−5 9.3716E−6 8.5251E−6 8.5251E−6
Random 2.9503E−5 2.5503E−5 1.3046E−5 1.3897E−5 1.3897E−5

of the radii of the influence domain of boundary point. The numerical convergence orders of u and its derivatives match our
theoretical results for points far away from the boundary. While points lie in the neighborhood of Γ , the numerical results
of u also confirm the theoretical error statements.

6. Conclusions

A GBNM is presented in this paper, which based on BIEs and scattered nodes on the boundary for boundary value
problems. One of the difficulties encountered in using the MLS approximation is the shape function lacking the delta
function property. Thus many special strategies are introduced in many meshless methods, such as BNM and EFGM, for
satisfying boundary conditions. In this paper, an equivalent variational form of BIE is used for the solution of boundary value
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Fig. 3. The convergence rates for example 1.

Fig. 4. The convergence rates for example 2.

Table 4
Approximations and convergence rates of the solutions for example 1.

x1, x2 Numerical solutions Exact solutions Rates
N = 8 N = 16 N = 32 N = 64

0.0, 0.2
u −0.0476595679 −0.0394598707 −0.0399896993 −0.0399900080 −0.0399893342 5.10
u,x1 −0.0198990473 −0.0156664816 −0.0160031771 −0.0159963861 −0.0159957337 4.31
u,x1x1 2.3844803869 1.9624989965 1.9919674706 1.9920350074 1.9920019199 5.03

0.4,−0.8
u −0.1889036355 −0.2635511950 −0.2432428611 −0.2434937070 −0.2434926608 5.33
u,x2 0.1457467610 0.6955418577 0.5494645852 0.5535411882 0.5535349960 5.31
u,x2x2 2.4990594433 −0.2180482372 0.7913095332 0.72923627196 0.7294211025 4.36

0.99, 0.0 u 1.1762456938 0.7341990809 0.8211109666 0.8304866846 0.8305530686 4.04
0.999, 0.0 u 1.1822859530 0.7383169664 0.8275294068 0.8389278100 0.8403892400 2.66
0.9999, 0.0 u 1.1826498692 0.7386949890 0.8279365790 0.8393737270 0.8413629129 2.52

problems. A key advantage with the variational formulation is the system matrices are symmetric. Besides, via multiplying
the boundary function by a test function and integrating over the boundary, boundary conditions can be implemented
exactly. Moreover, as in FEM and BEM for elliptic boundary value problems, also in GBNM, the variational formulation
provides the basic mathematical foundation for rigorous error and convergence analysis.
The error estimates for GBNM in Sobolev spaces by means of pseudo-differential operator theory have been presented,

which show that the error bound of the numerical solution is directly related to the radii of the influence domain of boundary
point. Besides, far away from the boundary, the error of potential u and its derivatives possess L∞-superconvergence. While
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Table 5
Approximations and convergence rates of the solutions for example 2.

x1, x2 Numerical solutions Exact solutions Rates
N = 8 N = 16 N = 32 N = 64

2.0, 2.0
u 0.0062732269 0.0061083390 0.0060997912 0.0060979588 0.0060975610 2.91
u,x1 0.0030600571 0.0029796733 0.0029755072 0.0029746140 0.0029744200 2.94
u,x1x1 −0.0001129655 −0.0001099272 −0.0001097683 −0.0001097344 −0.0001097271 3.39

18.0, 10.0
u 0.0197964409 0.0192657095 0.0192379720 0.0192320482 0.0192307692 2.86
u,x2 −0.0038099896 −0.0037051958 −0.0036996549 −0.0036984772 −0.0036982249 2.86
u,x2x2 0.0010853732 0.0010546443 0.0010529946 0.0010526458 0.0010525717 2.89

1.01, 0.0 u 0.8919230023 0.9883560086 0.9910803471 0.9906429660 0.9900990099 2.33
1.001, 0.0 u 0.8909427271 0.9893444106 0.9945783365 0.9970827688 0.9990009990 1.86
1.0001, 0.0 u 0.8907458298 0.9891803973 0.9944463632 0.9970128455 0.9999000100 1.67

inside the neighborhood of Γ , the error of u are also established. Some numerical experiments have been given to confirm
the theoretical results.
Much additional work remains to be done, such as numerical computations that involve engineering problems and

complex geometrical objects and adaptively procedures, but the results presented in this article show that the proposed
method has a great potential to become a very competitive method for the solution of a wide range of boundary value
problems.
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