200 research outputs found

    Maintaining Online Friendship: Cross-Cultural Analyses of Links among Relational Maintenance Strategies, Relational Factors, and Channel-Related Factors

    Get PDF
    Computer-mediated communication (CMC), such as electronic mail and newsgroups, is quickly becoming a pervasive interpersonal communication means. The general research purpose of the present study is to investigate the communicative strategies individuals use to maintain exclusively Internet-based friendships and the extent to which cultural, relational and channel-related factors may affect the use of these strategies. A total of 136 Chinese Internet users and 134 American Internet users completed an online survey that measured maintenance strategies that they used for sustaining a friendship that they had developed on the Internet, their online friendship relational experience (relational and partner certainty and relational equity), and communication channel-related variables (perceived social presence of the Internet and anticipation of face-to-face interactions in the near future). Participants were also asked to think of an offline “real-life” friendship and to answer questions about relational maintenance strategies used for sustaining this friendship. The results suggested that overall people use more prosocial relational maintenance strategies in their offline friendships than in their online friendship. However, this pattern was moderated by friendship status. The gap of frequencies of relational maintenance strategies in online and offline friendships was particularly large for casual friendships. With regard to antisocial maintenance strategies, participants reported more coercion/criticism in offline friendships but more deception in online friendships. Consistent with the prior findings concerning cultural variations in relational maintenance, the current study found that the American participants more frequently used prosocial maintenance strategies than did the Chinese participants in both online and offline friendships. On the other hand, the Chinese participants were more likely to use all types antisocial maintenance strategies than their American counterparts in both online and offline friendships. The result of the current study confirmed that varied degrees of relational uncertainty and relational equity are associated with the use of relational maintenance strategies. The findings also indicated the impact of communication channel-related factors on online friendship maintenance strategies. In sum, the findings of this cross-cultural study lent credence to the view that meaningful relationships are maintained via CMC. This study has added knowledge about ways this new technology used in sustaining relationships across different national cultures

    El impacto de la personalización y la presencia social de los asistentes de voz virtuales en la intención de compra, la actitud y la privacidad

    Full text link
    Trabajo Fin de Grado. Curso Académico 2020-2021. Doble Grado en Derecho y Administración y Dirección de Empresa

    Attachment style difference in online relationship involvement: An examination of interaction characteristics and relationship satisfaction

    Get PDF
    ABSTRACT This study investigated attachment style differences in online relationships with regard to interaction characteristics and relationship satisfaction. The effect of relationship type was also taken into account in these investigations. The findings suggested that attachment style differences in interaction breadth and depth were present only in casual friendships. Preoccupied and dismissing individuals had a lower level of interaction breadth and depth than did secure and fearful individuals within this type of online relationship. A same pattern of attachment style differences was found in relationship satisfaction of casual online friendships. 60

    Giant photoinduced lattice distortion in oxygen-vacancy ordered SrCoO2.5 thin films

    Full text link
    Despite of the tremendous efforts spent on the oxygen vacancy migration in determining the property optimization of oxygen-vacancy enrichment transition metal oxides, few has focused on their dynamic behaviors non-equilibrium states. In this work, we performed multi-timescale ultrafast X-ray diffraction measurements by using picosecond synchrotron X-ray pulses and femtosecond table-top X-ray pulses to monitor the structural dynamics in the oxygen-vacancy ordered SrCoO2.5 thin films. A giant photoinduced strain ({\Delta}c/c > 1%) was observed, whose distinct correlation with the pump photon energy indicates a non-thermal origin of the photoinduced strain. The sub-picosecond resolution X-ray diffraction reveals the formation and propagation of the coherent acoustic phonons inside the film. We also simulate the effect of photoexcited electron-hole pairs and the resulting lattice changes using the Density Function Theory method to obtain further insight on the microscopic mechanism of the measured photostriction effect. Comparable photostrictive responses and the strong dependence on excitation wavelength are predicted, revealing a bonding to anti-bonding charge transfer or high spin to intermediate spin crossover induced lattice expansion in the oxygen-vacancy films.Comment: 12 pages, 4 figures, support materia

    MicroRNA-646 inhibits the proliferation of ovarian granulosa cells via insulin-like growth factor 1 (IGF-1) in polycystic ovarian syndrome (PCOS)

    Get PDF
    Introduction: Polycystic ovarian syndrome (PCOS) is a common endocrinopathy in women. MicroRNAs (miRNAs) have been proven to play a crucial role in balancing the proliferation and apoptosis of granulosa cells (GCs) in PCOS. Material and methods: The miRNA of PCOS was screened by bioinformatics analysis, and microRNA 646 (miR-646) was found to be involved in insulin-related pathways by enrichment analysis. The cell counting kit-8 (CCK-8), cell colony formation, and the 5-ethynyl-2’-deoxyuridine (EdU) assays were used to explore the effect of miR-646 on proliferation of GCs, flow cytometry was used to measure the cell cycle and apoptosis, and Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were used to explore the biological mechanism of miR-646. The human ovarian granulosa cells KGN were selected by measuring the miR-646 and via insulin-like growth factor 1 (IGF-1) levels and used for cell transfection. Results: Overexpressed miR-646 inhibited KGN cell proliferation, and silenced miR-646 advanced it. Most cells were arrested in the S phase of cell cycle with overexpressed-miR-646, while after silencing miR-646, cells were arrested in the G2/M phase. And the miR-646 mimic raised apoptosis in KGN cells. Also, a dual-luciferase reporter proved the regulation effect of miR-646 on IGF-1, miR-646 mimic inhibited IGF-1, and miR-646 inhibitor advanced IGF-1. The cyclin D1, cyclin-dependent kinase 2 (CDK2), and B-cell CLL/lymphoma 2 (Bcl-2) levels were inhibited with overexpressed-miR-646, while silenced-miR-646 promoted their expression, and the bcl-2-like protein 4 (Bax) level was the opposite. This study found that silenced-IGF1 antagonized the promotive effect of the miR-646 inhibitor on cell proliferation. Conclusions: MiR-646 inhibitor treatment can promote the proliferation of GCs by regulating the cell cycle and inhibiting apoptosis, while silenced-IGF-1 antagonizes it

    Association of p53 rs1042522, MDM2 rs2279744, and p21 rs1801270 polymorphisms with retinoblastoma risk and invasion in a Chinese population.

    Get PDF
    Single nucleotide polymorphisms (SNPs) of p53 rs1042522, MDM2 rs2279744 and p21 rs1801270, all in the p53 pathway, which plays a crucial role in DNA damage and genomic instability, were reported to be associated with cancer risk and pathologic characteristics. This case-control study was designed to analyse the association between these SNPs and retinoblastoma (RB) in a Chinese Han population. These SNPs in 168 RB patients and 185 adult controls were genotyped using genomic DNA from venous blood. No significant difference was observed in allele or genotypic frequencies of these SNPs between Chinese RB patients and controls (all P > 0.05). However, the rs1042522 GC genotype showed a protective effect against RB invasion, as demonstrated by event-free survival (HR = 0.53, P = 0.007 for GC versus GG/CC). This effect was significant for patients with a lag time >1 month and no pre-enucleation treatment (P = 0.007 and P = 0.010, respectively), indicating an interaction between p53 rs1042522 and clinical characteristics, including lag time and pre-enucleation treatment status. Thus, the rs1042522 SNP may be associated with RB invasion in the Han Chinese population; however, further large and functional studies are needed to assess the validity of this association

    Deficient O-GlcNAc Glycosylation Impairs Regulatory T Cell Differentiation and Notch Signaling in Autoimmune Hepatitis

    Get PDF
    Post-translational modifications such as glycosylation play an important role in the functions of homeostatic proteins, and are critical driving factors of several diseases; however, the role of glycosylation in autoimmune hepatitis is poorly understood. Here, we established an O-GlcNAc glycosylation-deficient rat model by knocking out the Eogt gene by TALEN-mediated gene targeting. O-GlcNAc glycosylation deficiency overtly aggravated liver injury in concanavalin-A induced autoimmune hepatitis, and delayed self-recovery of the liver. Furthermore, flow cytometry analysis revealed increased CD4+ T cell infiltration in the liver of rats with O-GlcNAc glycosylation deficiency, and normal differentiation of regulatory T cells (Tregs) in the liver to inhibit T cell infiltration could not be activated. Moreover, in vitro experiments showed that O-GlcNAc glycosylation deficiency impaired Treg differentiation to inhibit the Notch signaling pathway in CD4+ T cells. These finding indicate that O-GlcNAc glycosylation plays a critical role in the activation of Notch signaling, which could promote Treg differentiation in the liver to inhibit T cell infiltration and control disease development in autoimmune hepatitis. Therefore, this study reveals a regulatory role for glycosylation in the pathogenesis of autoimmune hepatitis, and highlights glycosylation as a potential treatment target

    Hematoporphyrin monomethyl ether-mediated photodynamic effects on THP-1 cell-derived macrophages

    Get PDF
    a b s t r a c t Photodynamic therapy (PDT) has been shown to attenuate atherosclerotic plaque progression and decrease macrophage-infiltration. The effectiveness of PDT depends strongly on the type of photosensitizers. Hematoporphyrin monomethyl ether (HMME) is a promising second-generation porphyrin-related photosensitizer for PDT. This study is designed to characterize effects of HMME-based PDT on THP-1 cellderived macrophages and define the cell-death pathway. HMME was identified to accumulate in the macrophages by fluorescence microscopy and confocal scanning laser microscope. Our data demonstrated that the intensity of laser-induced HMME fluorescence in macrophages steadily increased with the increasing incubation concentration of HMME. The survival rate of macrophages determined by MTT assay decreased with the increasing HMME concentration and irradiation time. HMME-based PDT induced macrophage apoptosis via caspase-9 and caspase-3 activation pathway detected by caspase fluorescent assay kit and flow cytometer. The PDT increased the number of apoptotic macrophages by 14-fold at 12 h post irradiation by 9 J/cm 2 635 nm diode laser. These results imply that photodynamic therapy with HMME may therefore be a useful clinical treatment for unstable atherosclerotic plaques

    Superconductivity and orbital-selective nematic order in a new titanium-based kagome metal CsTi3Bi5

    Full text link
    Fabrication of new types of superconductors with novel physical properties has always been a major thread in the research of superconducting materials. An example is the enormous interests generated by the cascade of correlated topological quantum states in the newly discovered vanadium-based kagome superconductors AV3Sb5 (A=K, Rb, and Cs) with a Z2 topological band structure. Here we report the successful fabrication of single-crystals of titanium-based kagome metal CsTi3Bi5 and the observation of superconductivity and electronic nematicity. The onset of the superconducting transition temperature Tc is around 4.8 K. In sharp contrast to the charge density wave superconductor AV3Sb5, we find that the kagome superconductor CsTi3Bi5 preserves translation symmetry, but breaks rotational symmetry and exhibits an electronic nematicity. The angular-dependent magnetoresistivity shows a remarkable two-fold rotational symmetry as the magnetic field rotates in the kagome plane. The scanning tunneling microscopy and spectroscopic imaging detect rotational-symmetry breaking C2 quasiparticle interference patterns (QPI) at low energies, providing further microscopic evidence for electronic nematicity. Combined with first-principle calculations, we find that the nematic QPI is orbital-selective and dominated by the Ti dxz and dyz orbitals, possibly originating from the intriguing orbital bond nematic order. Our findings in the new "135" material CsTi3Bi5 provide new directions for exploring the multi-orbital correlation effect and the role of orbital or bond order in the electron liquid crystal phases evidenced by the symmetry breaking states in kagome superconductors
    corecore