11 research outputs found

    Table_3_Day-3-embryo fragmentation is associated with singleton birth weight following fresh single blastocyst transfer: A retrospective study.docx

    No full text
    BackgroundPrevious studies have arguably associated poor embryo morphology with low birth weight in singletons following single embryo transfer. However, the association between birth weight and specific morphological features in the cleavage stage remains less known. The purpose of the study was to investigate whether morphological features of embryos at the cleavage stage affect birth weight following blastocyst transfer.MethodsThe single-center retrospective cohort study included 4,226 singletons derived from fresh single cleavage-stage embryo transfer (ET; n = 1,185), fresh single blastocyst transfer (BT; n = 787), or frozen-thawed single blastocyst transfer (FBT; n = 2,254) between 2016 and 2019. Morphological parameters including early cleavage, day-3 fragmentation, symmetry, blastomere number, and blastocyst morphology were associated with neonatal birth weight and birth weight z-score in multivariate regression models. The models were adjusted for maternal age, body mass index (BMI), parity, peak estradiol level, endometrial thickness, insemination protocol, female etiologies, order of transfer, mode of delivery, and year of treatment.ResultsAdjusted for confounders, day-3 fragmentation was the only morphological feature associated with birth weight and birth weight z-score, while early cleavage, symmetry, blastomere number, and blastocyst morphology were not. Day-3 fragmentation increased the birth weight in both the ET (115.4 g, 95% CI: 26.6–204.2) and BT groups (168.8 g, 95% CI: 48.8–288.8) but not in the FBT group (7.47 g, 95% CI: -46.4 to 61.3). The associations between birth weight and these morphological parameters were confirmed through birth weight z-score analyses. The adjusted odds of large for gestational age (LGA) and high birth weight were also significantly greater in singletons following the transfer of fragmented embryos in the BT group [odds ratio (OR) 3, 95% CI: 1.2–7.51 and OR 3.65, 95% CI: 1.33–10, respectively]. The presence of fragmentation at the cleavage stage also affected the association between the blastocyst morphology and birth weight. Inner cell mass grades were negatively associated with birth weight in blastocysts with day-3 fragmentation but not in blastocysts without.ConclusionsThe birth weight following blastocyst transfer was found to be positively associated with fragmentation at the cleavage stage. The data did not support the argument that transferring a poor-looking embryo may increase the risks of low birth weight. However, concerns for LGA infants remain.</p

    Table_1_Day-3-embryo fragmentation is associated with singleton birth weight following fresh single blastocyst transfer: A retrospective study.docx

    No full text
    BackgroundPrevious studies have arguably associated poor embryo morphology with low birth weight in singletons following single embryo transfer. However, the association between birth weight and specific morphological features in the cleavage stage remains less known. The purpose of the study was to investigate whether morphological features of embryos at the cleavage stage affect birth weight following blastocyst transfer.MethodsThe single-center retrospective cohort study included 4,226 singletons derived from fresh single cleavage-stage embryo transfer (ET; n = 1,185), fresh single blastocyst transfer (BT; n = 787), or frozen-thawed single blastocyst transfer (FBT; n = 2,254) between 2016 and 2019. Morphological parameters including early cleavage, day-3 fragmentation, symmetry, blastomere number, and blastocyst morphology were associated with neonatal birth weight and birth weight z-score in multivariate regression models. The models were adjusted for maternal age, body mass index (BMI), parity, peak estradiol level, endometrial thickness, insemination protocol, female etiologies, order of transfer, mode of delivery, and year of treatment.ResultsAdjusted for confounders, day-3 fragmentation was the only morphological feature associated with birth weight and birth weight z-score, while early cleavage, symmetry, blastomere number, and blastocyst morphology were not. Day-3 fragmentation increased the birth weight in both the ET (115.4 g, 95% CI: 26.6–204.2) and BT groups (168.8 g, 95% CI: 48.8–288.8) but not in the FBT group (7.47 g, 95% CI: -46.4 to 61.3). The associations between birth weight and these morphological parameters were confirmed through birth weight z-score analyses. The adjusted odds of large for gestational age (LGA) and high birth weight were also significantly greater in singletons following the transfer of fragmented embryos in the BT group [odds ratio (OR) 3, 95% CI: 1.2–7.51 and OR 3.65, 95% CI: 1.33–10, respectively]. The presence of fragmentation at the cleavage stage also affected the association between the blastocyst morphology and birth weight. Inner cell mass grades were negatively associated with birth weight in blastocysts with day-3 fragmentation but not in blastocysts without.ConclusionsThe birth weight following blastocyst transfer was found to be positively associated with fragmentation at the cleavage stage. The data did not support the argument that transferring a poor-looking embryo may increase the risks of low birth weight. However, concerns for LGA infants remain.</p

    Table_2_Day-3-embryo fragmentation is associated with singleton birth weight following fresh single blastocyst transfer: A retrospective study.docx

    No full text
    BackgroundPrevious studies have arguably associated poor embryo morphology with low birth weight in singletons following single embryo transfer. However, the association between birth weight and specific morphological features in the cleavage stage remains less known. The purpose of the study was to investigate whether morphological features of embryos at the cleavage stage affect birth weight following blastocyst transfer.MethodsThe single-center retrospective cohort study included 4,226 singletons derived from fresh single cleavage-stage embryo transfer (ET; n = 1,185), fresh single blastocyst transfer (BT; n = 787), or frozen-thawed single blastocyst transfer (FBT; n = 2,254) between 2016 and 2019. Morphological parameters including early cleavage, day-3 fragmentation, symmetry, blastomere number, and blastocyst morphology were associated with neonatal birth weight and birth weight z-score in multivariate regression models. The models were adjusted for maternal age, body mass index (BMI), parity, peak estradiol level, endometrial thickness, insemination protocol, female etiologies, order of transfer, mode of delivery, and year of treatment.ResultsAdjusted for confounders, day-3 fragmentation was the only morphological feature associated with birth weight and birth weight z-score, while early cleavage, symmetry, blastomere number, and blastocyst morphology were not. Day-3 fragmentation increased the birth weight in both the ET (115.4 g, 95% CI: 26.6–204.2) and BT groups (168.8 g, 95% CI: 48.8–288.8) but not in the FBT group (7.47 g, 95% CI: -46.4 to 61.3). The associations between birth weight and these morphological parameters were confirmed through birth weight z-score analyses. The adjusted odds of large for gestational age (LGA) and high birth weight were also significantly greater in singletons following the transfer of fragmented embryos in the BT group [odds ratio (OR) 3, 95% CI: 1.2–7.51 and OR 3.65, 95% CI: 1.33–10, respectively]. The presence of fragmentation at the cleavage stage also affected the association between the blastocyst morphology and birth weight. Inner cell mass grades were negatively associated with birth weight in blastocysts with day-3 fragmentation but not in blastocysts without.ConclusionsThe birth weight following blastocyst transfer was found to be positively associated with fragmentation at the cleavage stage. The data did not support the argument that transferring a poor-looking embryo may increase the risks of low birth weight. However, concerns for LGA infants remain.</p

    DataSheet_1_Plant growth regulators improve the growth and physiology of transplanted Thalassia Hemprichii fragments.docx

    No full text
    IntroductionThe transplantation of seagrass fragments with shoots and rhizomes is the most common method for the ecological restoration of damaged seagrass meadows.MethodsThe aim of this study was to explore the effects of exogenous addition (10 mg per month for 3 months) of three commonly used plant growth regulators (PGRs), including indoleacetic acid (IAA), gibberellin (GA3), and paclobutrazol (PP333) on the growth and physiology of transplanted Thalassia hemprichii fragments (TTFs), with and without the rhizome apex (RA), using a simulation test. [Results] IAA and GA3 elevated the photosynthetic capacity and growth rate of TTF leaves but did not significantly alter leaf length and width. In contrast, PP333 reduced the leaf photosynthetic capacity and growth rate, while greatly increasing the leaf width and root viability. Additionally, PP333 treatment led to an increase in antioxidant enzyme activities (peroxidase [POD], superoxide dismutase [SOD], and catalase [CAT]), as well as malondialdehyde (MDA) and total phenol contents in TTFs, indicating some stress effects on the seagrass. Furthermore, IAA and GA3 decreased soluble sugar and protein contents and increased starch content in TTF tissues, whereas PP333 treatment elevated both nonstructural carbohydrate and soluble protein contents. The presence of RA positively affected the growth and physiology of T. hemprichii compared with TTFs without RA. There was a significant interaction between the PGRs and RA on leaf growth rate, chlorophyll fluorescence variables, and photosynthetic pigment content of the TTFs (p DiscussionThis study provides guidelines for the application of PGRs during the transplantation of T. hemprichii fragments for the restoration of seagrass meadows.</p

    Table_4_Day-3-embryo fragmentation is associated with singleton birth weight following fresh single blastocyst transfer: A retrospective study.docx

    No full text
    BackgroundPrevious studies have arguably associated poor embryo morphology with low birth weight in singletons following single embryo transfer. However, the association between birth weight and specific morphological features in the cleavage stage remains less known. The purpose of the study was to investigate whether morphological features of embryos at the cleavage stage affect birth weight following blastocyst transfer.MethodsThe single-center retrospective cohort study included 4,226 singletons derived from fresh single cleavage-stage embryo transfer (ET; n = 1,185), fresh single blastocyst transfer (BT; n = 787), or frozen-thawed single blastocyst transfer (FBT; n = 2,254) between 2016 and 2019. Morphological parameters including early cleavage, day-3 fragmentation, symmetry, blastomere number, and blastocyst morphology were associated with neonatal birth weight and birth weight z-score in multivariate regression models. The models were adjusted for maternal age, body mass index (BMI), parity, peak estradiol level, endometrial thickness, insemination protocol, female etiologies, order of transfer, mode of delivery, and year of treatment.ResultsAdjusted for confounders, day-3 fragmentation was the only morphological feature associated with birth weight and birth weight z-score, while early cleavage, symmetry, blastomere number, and blastocyst morphology were not. Day-3 fragmentation increased the birth weight in both the ET (115.4 g, 95% CI: 26.6–204.2) and BT groups (168.8 g, 95% CI: 48.8–288.8) but not in the FBT group (7.47 g, 95% CI: -46.4 to 61.3). The associations between birth weight and these morphological parameters were confirmed through birth weight z-score analyses. The adjusted odds of large for gestational age (LGA) and high birth weight were also significantly greater in singletons following the transfer of fragmented embryos in the BT group [odds ratio (OR) 3, 95% CI: 1.2–7.51 and OR 3.65, 95% CI: 1.33–10, respectively]. The presence of fragmentation at the cleavage stage also affected the association between the blastocyst morphology and birth weight. Inner cell mass grades were negatively associated with birth weight in blastocysts with day-3 fragmentation but not in blastocysts without.ConclusionsThe birth weight following blastocyst transfer was found to be positively associated with fragmentation at the cleavage stage. The data did not support the argument that transferring a poor-looking embryo may increase the risks of low birth weight. However, concerns for LGA infants remain.</p

    Table_5_Day-3-embryo fragmentation is associated with singleton birth weight following fresh single blastocyst transfer: A retrospective study.docx

    No full text
    BackgroundPrevious studies have arguably associated poor embryo morphology with low birth weight in singletons following single embryo transfer. However, the association between birth weight and specific morphological features in the cleavage stage remains less known. The purpose of the study was to investigate whether morphological features of embryos at the cleavage stage affect birth weight following blastocyst transfer.MethodsThe single-center retrospective cohort study included 4,226 singletons derived from fresh single cleavage-stage embryo transfer (ET; n = 1,185), fresh single blastocyst transfer (BT; n = 787), or frozen-thawed single blastocyst transfer (FBT; n = 2,254) between 2016 and 2019. Morphological parameters including early cleavage, day-3 fragmentation, symmetry, blastomere number, and blastocyst morphology were associated with neonatal birth weight and birth weight z-score in multivariate regression models. The models were adjusted for maternal age, body mass index (BMI), parity, peak estradiol level, endometrial thickness, insemination protocol, female etiologies, order of transfer, mode of delivery, and year of treatment.ResultsAdjusted for confounders, day-3 fragmentation was the only morphological feature associated with birth weight and birth weight z-score, while early cleavage, symmetry, blastomere number, and blastocyst morphology were not. Day-3 fragmentation increased the birth weight in both the ET (115.4 g, 95% CI: 26.6–204.2) and BT groups (168.8 g, 95% CI: 48.8–288.8) but not in the FBT group (7.47 g, 95% CI: -46.4 to 61.3). The associations between birth weight and these morphological parameters were confirmed through birth weight z-score analyses. The adjusted odds of large for gestational age (LGA) and high birth weight were also significantly greater in singletons following the transfer of fragmented embryos in the BT group [odds ratio (OR) 3, 95% CI: 1.2–7.51 and OR 3.65, 95% CI: 1.33–10, respectively]. The presence of fragmentation at the cleavage stage also affected the association between the blastocyst morphology and birth weight. Inner cell mass grades were negatively associated with birth weight in blastocysts with day-3 fragmentation but not in blastocysts without.ConclusionsThe birth weight following blastocyst transfer was found to be positively associated with fragmentation at the cleavage stage. The data did not support the argument that transferring a poor-looking embryo may increase the risks of low birth weight. However, concerns for LGA infants remain.</p

    DataSheet_1_Day-3-embryo fragmentation is associated with singleton birth weight following fresh single blastocyst transfer: A retrospective study.pdf

    No full text
    BackgroundPrevious studies have arguably associated poor embryo morphology with low birth weight in singletons following single embryo transfer. However, the association between birth weight and specific morphological features in the cleavage stage remains less known. The purpose of the study was to investigate whether morphological features of embryos at the cleavage stage affect birth weight following blastocyst transfer.MethodsThe single-center retrospective cohort study included 4,226 singletons derived from fresh single cleavage-stage embryo transfer (ET; n = 1,185), fresh single blastocyst transfer (BT; n = 787), or frozen-thawed single blastocyst transfer (FBT; n = 2,254) between 2016 and 2019. Morphological parameters including early cleavage, day-3 fragmentation, symmetry, blastomere number, and blastocyst morphology were associated with neonatal birth weight and birth weight z-score in multivariate regression models. The models were adjusted for maternal age, body mass index (BMI), parity, peak estradiol level, endometrial thickness, insemination protocol, female etiologies, order of transfer, mode of delivery, and year of treatment.ResultsAdjusted for confounders, day-3 fragmentation was the only morphological feature associated with birth weight and birth weight z-score, while early cleavage, symmetry, blastomere number, and blastocyst morphology were not. Day-3 fragmentation increased the birth weight in both the ET (115.4 g, 95% CI: 26.6–204.2) and BT groups (168.8 g, 95% CI: 48.8–288.8) but not in the FBT group (7.47 g, 95% CI: -46.4 to 61.3). The associations between birth weight and these morphological parameters were confirmed through birth weight z-score analyses. The adjusted odds of large for gestational age (LGA) and high birth weight were also significantly greater in singletons following the transfer of fragmented embryos in the BT group [odds ratio (OR) 3, 95% CI: 1.2–7.51 and OR 3.65, 95% CI: 1.33–10, respectively]. The presence of fragmentation at the cleavage stage also affected the association between the blastocyst morphology and birth weight. Inner cell mass grades were negatively associated with birth weight in blastocysts with day-3 fragmentation but not in blastocysts without.ConclusionsThe birth weight following blastocyst transfer was found to be positively associated with fragmentation at the cleavage stage. The data did not support the argument that transferring a poor-looking embryo may increase the risks of low birth weight. However, concerns for LGA infants remain.</p

    Poly(butylene 2,5-furan dicarboxylate), a Biobased Alternative to PBT: Synthesis, Physical Properties, and Crystal Structure

    No full text
    This paper describes the synthesis, crystal structure, and physicomechanical properties of a biobased polyester prepared from 2,5-furandicarboxylic acid (FDCA) and 1,4-butanediol. Melt-polycondensation experiments were conducted by a two-stage polymerization using titanium tetraisopropoxide (Ti­[OiPr]<sub>4</sub>) as a catalyst. Polymerization conditions (catalyst concentration, reaction time and second stage reaction temperature) were varied to optimize poly­(butylene-FDCA), PBF, and molecular weight. A series of PBFs with different <i>M</i><sub>w</sub> were characterized by DSC, TGA, DMTA, X-ray diffraction and tensile testing. Influence of molecular weight and melting/crystallization enthalpy on PBF material tensile properties was explored. Cold-drawing tensile tests at room temperature for PBF with <i>M</i><sub>w</sub> 16K to 27K showed a brittle-to-ductile transition. When <i>M</i><sub>w</sub> reaches 38K, the Young modulus of PBF remains above 900 MPa, and the elongation at break increases to above 1000%. The mechanical properties, thermal properties and crystal structures of PBF were similar to petroleum derived poly­(butylenes-terephthalate), PBT. Fiber diagrams of uniaxially stretched PBF films were collected, indexed, and the unit cell was determined as triclinic (<i>a</i> = 4.78(3) Å, <i>b</i> = 6.03(5) Å, <i>c</i> = 12.3(1) Å, α = 110.1(2)°, β = 121.1(3)°, γ = 100.6(2)°). A crystal structure was derived from this data and final atomic coordinates are reported. We concluded that there is a close similarity of the PBF structure to PBT α- and β-forms

    Polylactide/Poly(ω-hydroxytetradecanoic acid) Reactive Blending: A Green Renewable Approach to Improving Polylactide Properties

    No full text
    A green manufacturing technique, reactive extrusion (REx), was employed to improve the mechanical properties of polylactide (PLA). To achieve this goal, a fully biosourced PLA based polymer blend was conceived by incorporating small quantities of poly­(ω-hydroxytetradecanoic acid) (PC14). PLA/PC14 blends were compatibilized by transesterification reactions promoted by 200 ppm titanium tetrabutoxide (Ti­(OBu)<sub>4</sub>) during REx. REx for 15 min at 150 rpm and 200 °C resulted in enhanced blend mechanical properties while minimizing losses in PLA molecular weight. SEM analysis of the resulting compatibilized phase-separated blends showed good adhesion between dispersed PC14 phases within the continuous PLA phase. Direct evidence for in situ synthesis of PLA-<i>b</i>-PC14 copolymers was obtained by HMBC and HSQC NMR experiments. The size of the dispersed phase was tuned by the screw speed to “tailor” the blend morphology. In the presence of 200 ppm Ti­(OBu)<sub>4</sub>, inclusion of only 5% PC14 increased the elongation at break of PLA from 3 to 140% with only a slight decrease in the tensile modulus (3200 to 2900 MPa). Furthermore, PLA’s impact strength was increased by 2.4× that of neat PLA for 20% PC14 blends prepared by REx. Blends of PLA and PC14 are expected to expand the potential uses of PLA-based materials

    Tumor Angiogenesis Targeted Radiosensitization Therapy Using Gold Nanoprobes Guided by MRI/SPECT Imaging

    No full text
    Gold nanoparticles (AuNPs) have recently garnered great interest as potential radiosensitizers in tumor therapy. However, major challenges facing their application in this regard are further enhancement of tumor accumulation of the particles in addition to enhanced permeability retention (EPR) effect and an understanding of the optimal particle size and time for applying radiotherapy after the particle administration. In this study, we fabricated novel cyclic c­(RGDyC)-peptide-conjugated, Gd- and 99 mTc-labeled AuNPs (RGD@AuNPs-Gd99 mTc) probes with different sizes (29, 51, and 80 nm) and evaluated their potential as radiosensitization therapy both <i>in vitro</i> and <i>in vivo</i>. We found that these probes have a high specificity for <i>αvβ3</i> integrin positive cells, which resulted in their high cellular uptake and thereby enhanced radiosensitization. Imaging <i>in vivo</i> with MRI and SPECT/CT directly showed that the RGD@AuNPs-Gd99 mTc probes specifically target tumors and exhibit greater accumulation within tumors than the RAD@AuNPs-Gd99 mTc probes. Interestingly, we found that the 80 nm RGD@AuNPs-Gd99 mTc probes exhibit the greatest effects <i>in vitro</i>; however, the 29 nm RGD@AuNPs-Gd99 mTc probes were clearly most efficient <i>in vivo</i>. As a result, radiotherapy of tumors with the 29 nm probe was the most potent. Our study demonstrates that RGD@AuNPs-Gd99 mTc probes are highly useful radiosensitizers capable of guiding and enhancing radiation therapy of tumors
    corecore