100 research outputs found

    Taking a look at small-scale pedestrians and occluded pedestrians

    Get PDF
    Small-scale pedestrian detection and occluded pedestrian detection are two challenging tasks. However, most state-of-the-art methods merely handle one single task each time, thus giving rise to relatively poor performance when the two tasks, in practice, are required simultaneously. In this paper, it is found that small-scale pedestrian detection and occluded pedestrian detection actually have a common problem, i.e., an inaccurate location problem. Therefore, solving this problem enables to improve the performance of both tasks. To this end, we pay more attention to the predicted bounding box with worse location precision and extract more contextual information around objects, where two modules (i.e., location bootstrap and semantic transition) are proposed. The location bootstrap is used to reweight regression loss, where the loss of the predicted bounding box far from the corresponding ground-truth is upweighted and the loss of the predicted bounding box near the corresponding ground-truth is downweighted. Additionally, the semantic transition adds more contextual information and relieves semantic inconsistency of the skip-layer fusion. Since the location bootstrap is not used at the test stage and the semantic transition is lightweight, the proposed method does not add many extra computational costs during inference. Experiments on the challenging CityPersons and Caltech datasets show that the proposed method outperforms the state-of-the-art methods on the small-scale pedestrians and occluded pedestrians (e.g., 5.20% and 4.73% improvements on the Caltech)

    JCS-Net : joint classification and super-resolution network for small-scale pedestrian detection in surveillance images

    Get PDF
    While Convolutional Neural Network (CNN)-based pedestrian detection methods have proven to be successful in various applications, detecting small-scale pedestrian from surveillance images is still challenging.The major reason is that the small-scale pedestrians lack much detailed information compared to the large-scale pedestrians. To solve this problem, we propose to utilize the relationship between the large-scale pedestrians and the corresponding small-scale pedestrians to help recover the detailed information of the small-scale pedestrians, thus improving the performance of detecting small-scale pedestrians. Specifically, a unified network (called JCS-Net) is proposed for small-scale pedestrian detection, which integrates the classification task and the super-resolution task in a unified framework. As a result, the super-resolution and classification are fully engaged and the super-resolution sub-network can recover some useful detailed information for the subsequent classification. Based on HOG+LUV and JCS-Net, multi-layer channel features (MCF) are constructed to train the detector. Experimental results on the Caltech pedestrian dataset and the KITTI benchmark demonstrate the effectiveness of the proposed method. To further enhance the detection, multi-scale MCF based on JCS-Net for pedestrian detection is also proposed, which achieves the state-of-the-art performance

    Hierarchical shot detector

    Get PDF
    Single shot detector simultaneously predicts object categories and regression offsets of the default boxes. Despite of high efficiency, this structure has some inappropriate designs: (1) The classification result of the default box is improperly assigned to that of the regressed box during inference, (2) Only regression once is not good enough for accurate object detection. To solve the first problem, a novel reg-offset-cls (ROC) module is proposed. It contains three hierarchical steps: box regression, the feature sampling location predication, and the regressed box classification with the features of offset locations. To further solve the second problem, a hierarchical shot detector (HSD) is proposed, which stacks two ROC modules and one feature enhanced module. The second ROC treats the regressed boxes and the feature sampling locations of features in the first ROC as the inputs. Meanwhile, the feature enhanced module injected between two ROCs aims to extract the local and non-local context. Experiments on the MS COCO and PASCAL VOC datasets demonstrate the superiority of proposed HSD. Without the bells or whistles, HSD outperforms all one-stage methods at real-time speed

    Adaptive variable-grid least-squares reverse-time migration

    Get PDF
    Variable-grid methods have the potential to save computing costs and memory requirements in forward modeling and least-squares reverse-time migration (LSRTM). However, due to the inherent difficulty of automatic grid discretization, conventional variable-grid methods have not been widely used in industrial production. We propose a variable-grid LSRTM (VG-LSRTM) method based on an adaptive sampling strategy to improve computing efficiency and reduce memory requirements. Based on the mapping relation of two coordinate systems, we derive variable-grid acoustic wave equation and its corresponding Born forward modeling equation. On this basis, we develop a complete VG-LSRTM framework. Numerical experiments on a layered model validate the feasibility of the proposed VG-LSRTM algorithm. LSRTM tests on a modified Marmousi model demonstrate that our method can save computational costs and memory requirements with little accuracy loss

    Correlation of caecal microbiome endotoxins genes and intestinal immune cells in Eimeria tenella infection based on bioinformatics

    Get PDF
    IntroductionThe infection with Eimeria tenella (ET) can elicit expression of various intestinal immune cells, incite inflammation, disrupt intestinal homeostasis, and facilitate co-infection with diverse bacteria. However, the reciprocal interaction between intestinal immune cells and intestinal flora in the progression of ET-infection remains unclear.ObjectiveThe aim of this study was to investigate the correlation between cecal microbial endotoxin (CME)-related genes and intestinal immunity in ET-infection, with subsequent identification of hub potential biomarker and immunotherapy target.MethodsDifferential expression genes (DEGs) within ET-infection and hub genes related to CME were identified through GSE39602 dataset based on bioinformatic methods and Protein-protein interaction (PPI) network analysis. Moreover, immune infiltration was analyzed by CIBERSORT method. Subsequently, comprehensive functional enrichment analyses employing Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis along with Gene Ontology (GO), gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA) were performed.ResultsA total of 1089 DEGs and 25 hub genes were identified and CXCR4 was ultimately identified as a essential CME related potential biomarker and immunotherapy target in the ET-infection. Furthermore, activated natural killer cells, M0 macrophages, M2 macrophages, and T regulatory cells were identified as expressed intestinal immune cells. The functional enrichment analysis revealed that both DEGs and hub genes were significantly enriched in immune-related signaling pathways.ConclusionCXCR4 was identified as a pivotal CME-related potential biomarker and immunotherapy target for expression of intestinal immune cells during ET-infection. These findings have significant implications in elucidating the intricate interplay among ET-infection, CME, and intestinal immunity

    UXT at the crossroads of cell death, immunity and neurodegenerative diseases

    Get PDF
    The ubiquitous expressed transcript (UXT), a member of the prefoldin-like protein family, modulates regulated cell death (RCD) such as apoptosis and autophagy-mediated cell death through nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), P53, P62, and methylation, and is involved in the regulation of cell metabolism, thereby affecting tumor progression. UXT also maintains immune homeostasis and reduces proteotoxicity in neuro-degenerative diseases through selective autophagy and molecular chaperones. Herein, we review and further elucidate the mechanisms by which UXT affects the regulation of cell death, maintenance of immune homeostasis, and neurodegenerative diseases and discuss the possible UXT involvement in the regulation of ferroptosis and immunogenic cell death, and targeting it to improve cancer treatment outcomes by regulating cell death and immune surveillance
    corecore