552 research outputs found

    Generating Visual Scenes from Touch

    Full text link
    An emerging line of work has sought to generate plausible imagery from touch. Existing approaches, however, tackle only narrow aspects of the visuo-tactile synthesis problem, and lag significantly behind the quality of cross-modal synthesis methods in other domains. We draw on recent advances in latent diffusion to create a model for synthesizing images from tactile signals (and vice versa) and apply it to a number of visuo-tactile synthesis tasks. Using this model, we significantly outperform prior work on the tactile-driven stylization problem, i.e., manipulating an image to match a touch signal, and we are the first to successfully generate images from touch without additional sources of information about the scene. We also successfully use our model to address two novel synthesis problems: generating images that do not contain the touch sensor or the hand holding it, and estimating an image's shading from its reflectance and touch.Comment: ICCV 2023; Project site: https://fredfyyang.github.io/vision-from-touch

    GCN-RL Circuit Designer: Transferable Transistor Sizing with Graph Neural Networks and Reinforcement Learning

    Full text link
    Automatic transistor sizing is a challenging problem in circuit design due to the large design space, complex performance trade-offs, and fast technological advancements. Although there has been plenty of work on transistor sizing targeting on one circuit, limited research has been done on transferring the knowledge from one circuit to another to reduce the re-design overhead. In this paper, we present GCN-RL Circuit Designer, leveraging reinforcement learning (RL) to transfer the knowledge between different technology nodes and topologies. Moreover, inspired by the simple fact that circuit is a graph, we learn on the circuit topology representation with graph convolutional neural networks (GCN). The GCN-RL agent extracts features of the topology graph whose vertices are transistors, edges are wires. Our learning-based optimization consistently achieves the highest Figures of Merit (FoM) on four different circuits compared with conventional black-box optimization methods (Bayesian Optimization, Evolutionary Algorithms), random search, and human expert designs. Experiments on transfer learning between five technology nodes and two circuit topologies demonstrate that RL with transfer learning can achieve much higher FoMs than methods without knowledge transfer. Our transferable optimization method makes transistor sizing and design porting more effective and efficient.Comment: Accepted to the 57th Design Automation Conference (DAC 2020); 6 pages, 8 figure
    • …
    corecore