77 research outputs found

    A New Multiplicity Formula for the Weyl Modules of Type A

    Full text link
    A monomial basis and a filtration of subalgebras for the universal enveloping algebra U(gl)U(g_l) of a complex simple Lie algebra glg_l of type AlA_l is given in this note. In particular, a new multiplicity formula for the Weyl module V(λ)V(\lambda) of U(gl)U(g_l) is obtained in this note.Comment: 13 page

    Statistical Parameterized Physics-Based Machine Learning Digital Twin Models for Laser Powder Bed Fusion Process

    Full text link
    A digital twin (DT) is a virtual representation of physical process, products and/or systems that requires a high-fidelity computational model for continuous update through the integration of sensor data and user input. In the context of laser powder bed fusion (LPBF) additive manufacturing, a digital twin of the manufacturing process can offer predictions for the produced parts, diagnostics for manufacturing defects, as well as control capabilities. This paper introduces a parameterized physics-based digital twin (PPB-DT) for the statistical predictions of LPBF metal additive manufacturing process. We accomplish this by creating a high-fidelity computational model that accurately represents the melt pool phenomena and subsequently calibrating and validating it through controlled experiments. In PPB-DT, a mechanistic reduced-order method-driven stochastic calibration process is introduced, which enables the statistical predictions of the melt pool geometries and the identification of defects such as lack-of-fusion porosity and surface roughness, specifically for diagnostic applications. Leveraging data derived from this physics-based model and experiments, we have trained a machine learning-based digital twin (PPB-ML-DT) model for predicting, monitoring, and controlling melt pool geometries. These proposed digital twin models can be employed for predictions, control, optimization, and quality assurance within the LPBF process, ultimately expediting product development and certification in LPBF-based metal additive manufacturing.Comment: arXiv admin note: text overlap with arXiv:2208.0290

    A potential relationship between MMP-9 rs2250889 and ischemic stroke susceptibility

    Get PDF
    PurposeIschemic stroke (IS), a serious cerebrovascular disease, greatly affects people's health and life. Genetic factors are indispensable for the occurrence of IS. As a biomarker for IS, the MMP-9 gene is widely involved in the pathophysiological process of IS. This study attempts to find out the relationship between MMP-9 polymorphisms and IS susceptibility.MethodsA total of 700 IS patients and 700 healthy controls were recruited. The single nucleotide polymorphism (SNP) markers of the MMP-9 gene were genotyped by the MassARRAY analyzer. Multifactor dimensionality reduction (MDR) was applied to generate SNP–SNP interaction. Furthermore, the relationship between genetic variations (allele and genotype) of the MMP-9 gene and IS susceptibility was analyzed by calculating odds ratios (ORs) and 95% confidence intervals (CIs).ResultsOur results demonstrated that rs2250889 could significantly increase the susceptibility to IS in the codominant, dominant, overdominant, and log-additive models (p < 0.05). Further stratification analysis showed that compared with the control group, rs2250889 was associated with IS risk in different case groups (age, female, smoking, and non-drinking) (p < 0.05). Based on MDR analysis, rs2250889 was the best model for predicting IS risk (cross-validation consistency: 10/10, OR = 1.56 (1.26–1.94), p < 0.001).ConclusionOur study preliminarily confirmed that SNP rs2250889 was significantly associated with susceptibility to IS

    CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model

    Full text link
    Code Large Language Models (Code LLMs) have gained significant attention in the industry due to their wide applications in the full lifecycle of software engineering. However, the effectiveness of existing models in understanding non-English inputs for multi-lingual code-related tasks is still far from well studied. This paper introduces CodeFuse-13B, an open-sourced pre-trained code LLM. It is specifically designed for code-related tasks with both English and Chinese prompts and supports over 40 programming languages. CodeFuse achieves its effectiveness by utilizing a high quality pre-training dataset that is carefully filtered by program analyzers and optimized during the training process. Extensive experiments are conducted using real-world usage scenarios, the industry-standard benchmark HumanEval-x, and the specially designed CodeFuseEval for Chinese prompts. To assess the effectiveness of CodeFuse, we actively collected valuable human feedback from the AntGroup's software development process where CodeFuse has been successfully deployed. The results demonstrate that CodeFuse-13B achieves a HumanEval pass@1 score of 37.10%, positioning it as one of the top multi-lingual code LLMs with similar parameter sizes. In practical scenarios, such as code generation, code translation, code comments, and testcase generation, CodeFuse performs better than other models when confronted with Chinese prompts.Comment: 10 pages with 2 pages for reference

    CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting

    Get PDF
    Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery
    • …
    corecore