62 research outputs found

    Probe the gravitational constant variation via the propagation of gravitational waves

    Full text link
    The gravitational constant variation means the breakdown of the strong equivalence principle. As the cornerstone of general relativity, the validity of general relativity can be examined by studying the gravitational constant variation. Such variations have the potential to affect both the generation and propagation of gravitational waves. In this paper, our focus lies on the effect of gravitational constant variation specifically on the propagation of gravitational waves. We employ two analytical methods, namely based on the Fierz-Pauli action and the perturbation of Einstein-Hilbert action around Minkowski spacetime, both leading to the the same gravitational wave equation. By solving this equation, we find the effects of gravitational constant variation on gravitational wave propagation. The result is consistent with previous investigations based on Maxwell-like equations for gravitational waves. Notably, we find that small variations in the gravitational constant result in an amplitude correction at the leading order and a phase correction at the sub-leading order for gravitational waves. These results provide valuable insights for probing gravitational constant variation and can be directly applied to gravitational wave data analysis.Comment: 9 pages, 1 figur

    Dolphins: Multimodal Language Model for Driving

    Full text link
    The quest for fully autonomous vehicles (AVs) capable of navigating complex real-world scenarios with human-like understanding and responsiveness. In this paper, we introduce Dolphins, a novel vision-language model architected to imbibe human-like abilities as a conversational driving assistant. Dolphins is adept at processing multimodal inputs comprising video (or image) data, text instructions, and historical control signals to generate informed outputs corresponding to the provided instructions. Building upon the open-sourced pretrained Vision-Language Model, OpenFlamingo, we first enhance Dolphins's reasoning capabilities through an innovative Grounded Chain of Thought (GCoT) process. Then we tailored Dolphins to the driving domain by constructing driving-specific instruction data and conducting instruction tuning. Through the utilization of the BDD-X dataset, we designed and consolidated four distinct AV tasks into Dolphins to foster a holistic understanding of intricate driving scenarios. As a result, the distinctive features of Dolphins are characterized into two dimensions: (1) the ability to provide a comprehensive understanding of complex and long-tailed open-world driving scenarios and solve a spectrum of AV tasks, and (2) the emergence of human-like capabilities including gradient-free instant adaptation via in-context learning and error recovery via reflection.Comment: The project page is available at https://vlm-driver.github.io

    The effect of the gravitational constant variation on the propagation of gravitational waves

    Full text link
    Since the first detection of gravitational waves, they have been used to investigate various fundamental problems, including the variation of physical constants. Regarding the gravitational constant, previous works focused on the effect of the gravitational constant variation on the gravitational wave generation. In this paper, we investigate the effect of the gravitational constant variation on the gravitational wave propagation. The Maxwell-like equation that describes the propagation of gravitational waves is extended in this paper to account for situations where the gravitational constant varies. Based on this equation, we find that the amplitude of gravitational waves will be corrected. Consequently the estimated distance to the gravitational wave source without considering such a correction may be biased. Applying our correction result to the well known binary neutron star coalescence event GW170817, we get a constraint on the variation of the gravitational constant. Relating our result to the Yukawa deviation of gravity, we for the first time get the constraint of the Yukawa parameters in 10Mpc scale. This scale corresponds to a graviton mass mg∼10−31m_g\sim10^{-31}eV

    Practical and Secure Circular Range Search on Private Spatial Data

    Get PDF
    With the location-based services (LBS) booming, the volume of spatial data inevitably explodes. In order to reduce local storage and computational overhead, users tend to outsource data and initiate queries to the cloud. However, sensitive data or queries may be compromised if cloud server has access to raw data and plaintext token. To cope with this problem, searchable encryption for geometric range is applied. Geometric range search has wide applications in many scenarios, especially the circular range search. In this paper, a practical and secure circular range search scheme (PSCS) is proposed to support searching for spatial data in a circular range. With our scheme, a semi-honest cloud server will return data for a given circular range correctly without uncovering index privacy or query privacy. We propose a polynomial split algorithm which can decompose the inner product calculation neatly. Then, we define the security of our PSCS formally and prove that it is secure under same-closeness-pattern chosen-plaintext attacks (CLS-CPA) in theory. In addition, we demonstrate the efficiency and accuracy through analysis and experiments compared with existing schemes

    VCKSCF: Efficient Verifiable Conjunctive Keyword Search Based on Cuckoo Filter for Cloud Storage

    Get PDF
    Searchable Symmetric Encryption(SSE) remains to be one of the hot topics in the field of cloud storage technology. However, malicious servers may return incorrect search results intentionally, which will bring significant security risks to users. Therefore, verifiable searchable encryption emerged. In the meantime, single-keyword query limits the applications of searchable encryption. Accordingly, more expressive searchable encryption schemes are desirable. In this paper, we propose a verifiable conjunctive keyword search scheme based on Cuckoo filter (VCKSCF), which significantly reduces verification and storage overhead. Security analysis indicates that the proposed scheme achieves security in the face of indistinguishability under chosen keyword attack and the unforgeability of proofs and search tokens. Meanwhile, the experimental evaluation demonstrates that it achieves preferable performance in real-world settings

    4K-DMDNet: diffraction model-driven network for 4K computer-generated holography

    Get PDF
    Deep learning offers a novel opportunity to achieve both high-quality and high-speed computer-generated holography (CGH). Current data-driven deep learning algorithms face the challenge that the labeled training datasets limit the training performance and generalization. The model-driven deep learning introduces the diffraction model into the neural network. It eliminates the need for the labeled training dataset and has been extensively applied to hologram generation. However, the existing model-driven deep learning algorithms face the problem of insufficient constraints. In this study, we propose a model-driven neural network capable of high-fidelity 4K computer-generated hologram generation, called 4K Diffraction Model-driven Network (4K-DMDNet). The constraint of the reconstructed images in the frequency domain is strengthened. And a network structure that combines the residual method and sub-pixel convolution method is built, which effectively enhances the fitting ability of the network for inverse problems. The generalization of the 4K-DMDNet is demonstrated with binary, grayscale and 3D images. High-quality full-color optical reconstructions of the 4K holograms have been achieved at the wavelengths of 450 nm, 520 nm, and 638 nm

    Quantitative phase imaging through an ultra-thin lensless fiber endoscope

    Get PDF
    Quantitative phase imaging (QPI) is a label-free technique providing both morphology and quantitative biophysical information in biomedicine. However, applying such a powerful technique to in vivo pathological diagnosis remains challenging. Multi-core fiber bundles (MCFs) enable ultra-thin probes for in vivo imaging, but current MCF imaging techniques are limited to amplitude imaging modalities. We demonstrate a computational lensless microendoscope that uses an ultra-thin bare MCF to perform quantitative phase imaging with microscale lateral resolution and nanoscale axial sensitivity of the optical path length. The incident complex light field at the measurement side is precisely reconstructed from the far-field speckle pattern at the detection side, enabling digital refocusing in a multi-layer sample without any mechanical movement. The accuracy of the quantitative phase reconstruction is validated by imaging the phase target and hydrogel beads through the MCF. With the proposed imaging modality, three-dimensional imaging of human cancer cells is achieved through the ultra-thin fiber endoscope, promising widespread clinical applications

    Statistical Parameterized Physics-Based Machine Learning Digital Twin Models for Laser Powder Bed Fusion Process

    Full text link
    A digital twin (DT) is a virtual representation of physical process, products and/or systems that requires a high-fidelity computational model for continuous update through the integration of sensor data and user input. In the context of laser powder bed fusion (LPBF) additive manufacturing, a digital twin of the manufacturing process can offer predictions for the produced parts, diagnostics for manufacturing defects, as well as control capabilities. This paper introduces a parameterized physics-based digital twin (PPB-DT) for the statistical predictions of LPBF metal additive manufacturing process. We accomplish this by creating a high-fidelity computational model that accurately represents the melt pool phenomena and subsequently calibrating and validating it through controlled experiments. In PPB-DT, a mechanistic reduced-order method-driven stochastic calibration process is introduced, which enables the statistical predictions of the melt pool geometries and the identification of defects such as lack-of-fusion porosity and surface roughness, specifically for diagnostic applications. Leveraging data derived from this physics-based model and experiments, we have trained a machine learning-based digital twin (PPB-ML-DT) model for predicting, monitoring, and controlling melt pool geometries. These proposed digital twin models can be employed for predictions, control, optimization, and quality assurance within the LPBF process, ultimately expediting product development and certification in LPBF-based metal additive manufacturing.Comment: arXiv admin note: text overlap with arXiv:2208.0290

    Primary lipoblastic nerve sheath tumor in an inguinal lymph node mimicking metastatic tumor: a case report and literature review

    Get PDF
    Lipoblastic nerve sheath tumors of soft tissue are characterized as schwannoma tumors that exhibit adipose tissue and lipoblast-like cells with signet-ring morphology. They have been documented to arise in various anatomic locations, including the thigh, groin, shoulder, and retroperitoneum. However, to our knowledge, this tumor has not been previously reported as a lymph node primary. We present herein the first case of a benign primary lipoblastic nerve sheath tumor arising in an inguinal lymph node in a 69-year-old man. Microscopic examination revealed a multinodular tumor comprising fascicles of spindle cells, as well as adipocytic and lipoblast-like signet-ring cell component in the context of schwannoma. Despite the presence of some bizarre cells with nuclear atypia, no obvious mitotic activity or necrosis was observed. Immunohistochemical analysis showed strong and diffuse expression of S-100, SOX10, CD56, and NSE in the spindle cells as well as in the signet-ring lipoblast-like cells and the mature adipocytes. Sequencing analysis of the neoplasm identified six non-synonymous single nucleotide variant genes, specifically NF1, BRAF, ECE1, AMPD3, CRYAB, and NPHS1, as well as four nonsense mutation genes including MRE11A, CEP290, OTOA, and ALOXE3. The patient remained alive and well with no evidence of recurrence over a period of ten-year follow-up
    • …
    corecore