58 research outputs found

    Robust Position Control of PMSM Using Fractional-Order Sliding Mode Controller

    Get PDF
    A new robust fractional-order sliding mode controller (FOSMC) is proposed for the position control of a permanent magnet synchronous motor (PMSM). The sliding mode controller (SMC), which is insensitive to uncertainties and load disturbances, is studied widely in the application of PMSM drive. In the existing SMC method, the sliding surface is usually designed based on the integer-order integration or differentiation of the state variables, while in this proposed robust FOSMC algorithm, the sliding surface is designed based on the fractional-order calculus of the state variables. In fact, the conventional SMC method can be seen as a special case of the proposed FOSMC method. The performance and robustness of the proposed method are analyzed and tested for nonlinear load torque disturbances, and simulation results show that the proposed algorithm is more robust and effective than the conventional SMC method

    Three-dimensional parton distribution functions g1Tg_{1T} and h1L⊥h_{1L}^\perp in the polarized proton-antiproton Drell-Yan process

    Full text link
    We present predictions of the unweighted and weighted double spin asymmetries related to the transversal helicity distribution g1Tg_{1T} and the longitudinal transversity distribution h1L⊥h_{1L}^\perp, two of eight leading-twist transverse momentum dependent parton distributions (TMDs) or three-dimensional parton distribution functions (3dPDFs), in the polarized proton-antiproton Drell-Yan process at typical kinematics on the Facility for Antiproton and Ion Research (FAIR). We conclude that FAIR is ideal to access the new 3dPDFs towards a detailed picture of the nucleon structure.Comment: 6 latex pages, 5 figures, version for publication in EPJ

    The Bone-Forming Effects of HIF-1α-Transduced BMSCs Promote Osseointegration with Dental Implant in Canine Mandible

    Get PDF
    The presence of insufficient bone volume remains a major clinical problem for dental implant placement to restore the oral function. Gene-transduced stem cells provide a promising approach for inducing bone regeneration and enhancing osseointegration in dental implants with tissue engineering technology. Our previous studies have demonstrated that the hypoxia-inducible factor-1α (HIF-1α) promotes osteogenesis in rat bone mesenchymal stem cells (BMSCs). In this study, the function of HIF-1α was validated for the first time in a preclinical large animal canine model in term of its ability to promote new bone formation in defects around implants as well as the osseointegration between tissue-engineered bone and dental implants. A lentiviral vector was constructed with the constitutively active form of HIF-1α (cHIF). The ectopic bone formation was evaluated in nude mice. The therapeutic potential of HIF-1α-overexpressing canine BMSCs in bone repair was evaluated in mesi-implant defects of immediate post-extraction implants in the canine mandible. HIF-1α mediated canine BMSCs significantly promoted new bone formation both subcutaneously and in mesi-implant defects, including increased bone volume, bone mineral density, trabecular thickness, and trabecular bone volume fraction. Furthermore, osseointegration was significantly enhanced by HIF-1α-overexpressing canine BMSCs. This study provides an important experimental evidence in a preclinical large animal model concerning to the potential applications of HIF-1α in promoting new bone formation as well as the osseointegration of immediate implantation for oral function restoration

    Recursive of Least Square Based Online Calibration Method in Geomagnetic Detection

    No full text
    With the problem of attitude measurement accuracy is susceptible to various errors of geomagnetic survey, this paper establishes geomagnetic measurement error ellipsoid model by analysis of on the environment and own errors, uses the maximum likelihood algorithm for solving the static error correction coefficient. The experimental results show that, the maximum of attitude angle errors is less than 5° near blind direction, online combination correction can ensure the accuracy of attitude detection system under different shooting conditions

    Fractional-Order Active Disturbance Rejection Controller for Motion Control of a Novel 6-DOF Parallel Robot

    No full text
    A novel 6-degree-of-freedom (6-DOF) parallel robot driven by six novel linear motors is designed and controlled in this paper. Detailed structures of linear motors are illustrated. A control strategy based on kinematics of the 6-DOF parallel robot is used, and six linear motors are controlled to track their own desired trajectories under a designed fractional-order active disturbance rejection controller (FOADRC). Compared with the normal ADRC, two desired trajectories and three different working situations of a linear motor are simulated to show good performances of the FOADRC. Experimental results show that six linear motors can track their own desired trajectories accurately under payloads and disturbances, and the novel 6-DOF parallel robot can be controlled well

    Positioning of Quadruped Robot Based on Tightly Coupled LiDAR Vision Inertial Odometer

    No full text
    Quadruped robots, an important class of unmanned aerial vehicles, have broad potential for applications in education, service, industry, military, and other fields. Their independent positioning plays a key role for completing assigned tasks in a complex environment. However, positioning based on global navigation satellite systems (GNSS) may result in GNSS jamming and quadruped robots not operating properly in environments sheltered by buildings. In this paper, a tightly coupled LiDAR vision inertial odometer (LVIO) is proposed to address the positioning inaccuracy of quadruped robots, which have poor mileage information obtained though legs and feet structures only. With this optimization method, the point cloud data obtained by 3D LiDAR, the image feature information obtained by binocular vision, and the IMU inertial data are combined to improve the precise indoor and outdoor positioning of a quadruped robot. This method reduces the errors caused by the uniform motion model in laser odometer as well as the image blur caused by rapid movements of the robot, which can lead to error-matching in a dynamic scene; at the same time, it alleviates the impact of drift on inertial measurements. Finally, the quadruped robot in the laboratory is used to build a physical platform for verification. The experimental results show that the designed LVIO effectively realizes the positioning of four groups of robots with high precision and strong robustness, both indoors or outdoors, which verify the feasibility and effectiveness of the proposed method

    Accelerated Degradation Model of Nonlinear Wiener Process Based on Fixed Time Index

    No full text
    In the process of extrapolating a lifetime distribution function under normal storage conditions through nonlinear accelerated degradation data, time indexes under the normal storage conditions are usually set to the mean value of time indexes under various accelerated stresses. However, minor differences in time indexes may lead to great changes in the assessment results. For such a problem, an accelerated degradation model of a nonlinear Wiener process based on a fixed time index is established first and meanwhile, the impact of the measurement error is considered. Then, the probability density function is normalized, and multiple unknown parameters are estimated by using fminsearch function in MATLAB and multiple iterations. Finally, the model is validated by accelerated degradation test data of accelerometers and the O-type rubber sealing rings. The results show that there is a difference of 30,710 h for accelerometers between the mean time to failure under normal storage conditions obtained by the proposed method and the mean time to failure when the time indexes are the mean value of those under various accelerated stresses, and the main cause of the difference is compared and analyzed. A similar phenomenon is observed in the case study of O-type rubber sealing rings

    Analysis and Optimization of a Microgripper Driven by Linear Ultrasonic Motors

    No full text
    This paper presents the vibration response analysis and optimal structural design of a microgripper driven by linear ultrasonic motors (LUMs) dedicated to improving end-point positioning accuracy. Based on structural vibration theory, a parametric vibration response model of the microgripper finger was established, and the relative sensitivities of the structural and material parameters that affect the vibration amplitude of the fingertip were calculated within the structural and material constraints. Then, according to the sensitivity calculation results, a multidimensional constrained nonlinear optimization model was constructed to suppress the vibration of the end-effector. The improved internal penalty function method combined with Newton iteration was adopted to obtain the optimal structural parameters. Finally, the vibration experimental results show that the vibration amplitude of the initial microgripper fingertip is 16.31 μm, and the value measured after optimization was 2.49 μm, exhibiting a reduction of 84.7%. Therefore, the proposed optimal design method can effectively restrain the vibration of the microgripper end-effector and improve manipulation stability
    • …
    corecore