2,509 research outputs found
Extracting the differential phase in dual atom interferometers by modulating magnetic fields
We present a new scheme for measuring the differential phase in dual atom
interferometers. The magnetic field is modulated in one interferometer, and the
differential phase can be extracted without measuring the amplitude of the
magnetic field by combining the ellipse and linear fitting methods. The gravity
gradient measurements are discussed based on dual atom interferometers.
Numerical simulation shows that the systematic error of the differential phase
measurement is largely decreased when the duration of the magnetic field is
symmetrically modulated. This combined fitting scheme has a high accuracy for
measuring an arbitrary differential phase in dual atom interferometers.Comment: 5 pages, 4 figure
Power-Law Decay of Standing Waves on the Surface of Topological Insulators
We propose a general theory on the standing waves (quasiparticle interference
pattern) caused by the scattering of surface states off step edges in
topological insulators, in which the extremal points on the constant energy
contour of surface band play the dominant role. Experimentally we image the
interference patterns on both BiTe and BiSe films by measuring
the local density of states using a scanning tunneling microscope. The observed
decay indices of the standing waves agree excellently with the theoretical
prediction: In BiSe, only a single decay index of -3/2 exists; while in
BiTe with strongly warped surface band, it varies from -3/2 to -1/2 and
finally to -1 as the energy increases. The -1/2 decay indicates that the
suppression of backscattering due to time-reversal symmetry does not
necessarily lead to a spatial decay rate faster than that in the conventional
two-dimensional electron system. Our formalism can also explain the
characteristic scattering wave vectors of the standing wave caused by
non-magnetic impurities on BiTe.Comment: 4 pages, 3 figure
Visualizing the elongated vortices in -Ga nanostrips
We study the magnetic response of superconducting -Ga via low
temperature scanning tunneling microscopy and spectroscopy. The magnetic vortex
cores rely substantially on the Ga geometry, and exhibit an unexpectedly-large
axial elongation with aspect ratio up to 40 in rectangular Ga nano-strips
(width 100 nm). This is in stark contrast with the isotropic circular
vortex core in a larger round-shaped Ga island. We suggest that the unusual
elongated vortices in Ga nanostrips originate from geometric confinement effect
probably via the strong repulsive interaction between the vortices and Meissner
screening currents at the sample edge. Our finding provides novel conceptual
insights into the geometrical confinement effect on magnetic vortices and forms
the basis for the technological applications of superconductors.Comment: published in Phys. Rev. B as a Rapid Communicatio
Interface induced high temperature superconductivity in single unit-cell FeSe films on SrTiO3
Searching for superconducting materials with high transition temperature (TC)
is one of the most exciting and challenging fields in physics and materials
science. Although superconductivity has been discovered for more than 100
years, the copper oxides are so far the only materials with TC above 77 K, the
liquid nitrogen boiling point. Here we report an interface engineering method
for dramatically raising the TC of superconducting films. We find that one
unit-cell (UC) thick films of FeSe grown on SrTiO3 (STO) substrates by
molecular beam epitaxy (MBE) show signatures of superconducting transition
above 50 K by transport measurement. A superconducting gap as large as 20 meV
of the 1 UC films observed by scanning tunneling microcopy (STM) suggests that
the superconductivity could occur above 77 K. The occurrence of
superconductivity is further supported by the presence of superconducting
vortices under magnetic field. Our work not only demonstrates a powerful way
for finding new superconductors and for raising TC, but also provides a
well-defined platform for systematic study of the mechanism of unconventional
superconductivity by using different superconducting materials and substrates
Seismic performance evaluation of a high-rise building with structural irregularities
In this study, the seismic performances of a 14-storey office building in Nanjing, China, due to its plan and vertical irregularities in the structural system, were evaluated using the response spectrum method, elastic time history analysis and elastic–plastic time history analysis. In combination of these three methods, the storey drifts and elastic–plastic states of typical structural members under three levels of earthquakes were determined to verify the robustness of the structural design program. The damage states of typical structural members at some sensitive positions were estimated and evaluated under rare earthquakes. Consequently, all structural members were within the scope of elastic performances under the actions of frequent earthquakes. The maximum displacements and storey drifts satisfied the requirements of the design codes within the scope of elastic or elastic–plastic deformations. The induced damages could reach “moderate damage” states, satisfying the requirements for the expected performances by the codes. The consequences indicated that the design scheme and critical parameters for the building structure satisfied the requirements of seismic performances from the codes
Manipulation of magnetic systems by quantized surface acoustic wave via piezomagnetic effect
The quantized surface acoustic wave (SAW) in the piezoelectric medium has
recently been studied, and is used to control electric dipoles of quantum
systems via the electric field produced through piezoelectric effect. However,
it is not easy and convenient to manipulate magnetic moments directly by the
electric field. We here study a quantum theory of SAW in the piezomagnetic
medium. We show that the intrinsic properties of the piezomagnetic medium
enable the SAW in the piezomagnetic medium to directly interact with magnetic
moments of quantum systems via magnetic field induced by piezomagnetic effect.
By taking the strip SAW waveguide made of piezomagnetic medium as an example,
we further study the coupling strengths between different magnetic quantum
systems with magnetic moments and the quantized single-mode SAW in the
waveguide. Based on this, we discuss the interaction between magnetic quantum
systems mediated by the quantized multi-mode SAW in piezomagnetic waveguide.
Our study provides a convenient way to directly control magnetic quantum
systems by quantized SAW, and offers potential applications to on-chip
information processing based on solid-state quantum systems via quantized
acoustic wave.Comment: 16 pages, 10 figure
Emerging tick-borne infections in mainland China: an increasing public health threat
Since the beginning of the 1980s, 33 emerging tick-borne agents have been identified in mainland China, including eight species of spotted fever group rickettsiae, seven species in the family Anaplasmataceae, six genospecies in the complex Borrelia burgdorferi sensu lato, 11 species of Babesia, and the virus causing severe fever with thrombocytopenia syndrome. In this Review we have mapped the geographical distributions of human cases of infection. 15 of the 33 emerging tick-borne agents have been reported to cause human disease, and their clinical characteristics have been described. The non-specific clinical manifestations caused by tick-borne pathogens present a major diagnostic challenge and most physicians are unfamiliar with the many tick-borne diseases that present with non-specific symptoms in the early stages of the illness. Advances in and application of modern molecular techniques should help with identification of emerging tick-borne pathogens and improve laboratory diagnosis of human infections. We expect that more novel tick-borne infections in ticks and animals will be identified and additional emerging tick-borne diseases in human beings will be discovered
GRATIS: Deep Learning Graph Representation with Task-specific Topology and Multi-dimensional Edge Features
Graph is powerful for representing various types of real-world data. The
topology (edges' presence) and edges' features of a graph decides the message
passing mechanism among vertices within the graph. While most existing
approaches only manually define a single-value edge to describe the
connectivity or strength of association between a pair of vertices,
task-specific and crucial relationship cues may be disregarded by such manually
defined topology and single-value edge features. In this paper, we propose the
first general graph representation learning framework (called GRATIS) which can
generate a strong graph representation with a task-specific topology and
task-specific multi-dimensional edge features from any arbitrary input. To
learn each edge's presence and multi-dimensional feature, our framework takes
both of the corresponding vertices pair and their global contextual information
into consideration, enabling the generated graph representation to have a
globally optimal message passing mechanism for different down-stream tasks. The
principled investigation results achieved for various graph analysis tasks on
11 graph and non-graph datasets show that our GRATIS can not only largely
enhance pre-defined graphs but also learns a strong graph representation for
non-graph data, with clear performance improvements on all tasks. In
particular, the learned topology and multi-dimensional edge features provide
complementary task-related cues for graph analysis tasks. Our framework is
effective, robust and flexible, and is a plug-and-play module that can be
combined with different backbones and Graph Neural Networks (GNNs) to generate
a task-specific graph representation from various graph and non-graph data. Our
code is made publicly available at
https://github.com/SSYSteve/Learning-Graph-Representation-with-Task-specific-Topology-and-Multi-dimensional-Edge-Features
- …
