5,955 research outputs found

    Experimental study on energy consumption of computer numerical control machine tools

    Get PDF
    Machining processes are responsible for substantial environmental impacts due to their great energy consumption. Accurately characterizing the energy consumption of machining processes is a starting point to increase manufacturing energy efficiency and reduce their associated environmental impacts. The energy calculation of machining processes depends on the availability of energy supply data of machine tools. However, the energy supply can vary greatly among different types of machine tools so that it is difficult to obtain the energy data theoretically. The aim of this research was to investigate the energy characteristics and obtain the power models of computer numerical control (CNC) machine tools through an experimental study. Four CNC lathes, two CNC milling machines and one machining center were selected for experiments. Power consumption of non-cutting motions and material removal was measured and compared for the selected machine tools. Here, non-cutting motions include standby, cutting fluid spraying, spindle rotation and feeding operations of machine tools. Material removal includes turning and milling. Results show that the power consumption of non-cutting motions and milling is dependent on machine tools while the power consumption of turning is almost independent from the machine tools. The results imply that the energy saving potential of machining processes is tremendous

    Deep Reinforcement Learning-based Image Captioning with Embedding Reward

    Full text link
    Image captioning is a challenging problem owing to the complexity in understanding the image content and diverse ways of describing it in natural language. Recent advances in deep neural networks have substantially improved the performance of this task. Most state-of-the-art approaches follow an encoder-decoder framework, which generates captions using a sequential recurrent prediction model. However, in this paper, we introduce a novel decision-making framework for image captioning. We utilize a "policy network" and a "value network" to collaboratively generate captions. The policy network serves as a local guidance by providing the confidence of predicting the next word according to the current state. Additionally, the value network serves as a global and lookahead guidance by evaluating all possible extensions of the current state. In essence, it adjusts the goal of predicting the correct words towards the goal of generating captions similar to the ground truth captions. We train both networks using an actor-critic reinforcement learning model, with a novel reward defined by visual-semantic embedding. Extensive experiments and analyses on the Microsoft COCO dataset show that the proposed framework outperforms state-of-the-art approaches across different evaluation metrics

    Single‐radio multi‐subchannel random access for OFDMA wireless networks

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163809/1/ell2bf00972.pd

    Current methods for measuring three-phase relative permeability and its influencing factors

    Get PDF
    Three-phase fluid flow in reservoirs is present in the entire process of oil field development, and three-phase relative permeability data are crucial for reservoir engineering and numerical simulation. At the same time, carbon dioxide flooding and storage have garnered significant attention recently. The calculation of dynamic storage volumes and an in-depth understanding of three-phase flow within formations are inextricably linked to three-phase relative permeability. This review is centered around the available experimental measurements, theoretical models that predict three-phase relative permeability using two-phase data, and four Lattice Boltzmann method models. By analyzing the strengths, weaknesses and limitations of each method and assessing the impact of factors like saturation history, interfacial tension, rock properties, and fluid characteristics on three-phase relative permeability, this paper seeks to offer a comprehensive understanding of the topic. In summary, we provide a concise overview of the prospects and challenges in advancing three-phase relative permeability, serving as a valuable reference for the field of carbon dioxide flooding and storage.Document Type: Invited reviewCited as: Mei, Y., Lv, W., Zhou, X., Huang, J., Jia, N., Wang, G. Current methods for measuring three-phase relative permeability and its influencing factors. Advances in Geo-Energy Research, 2023, 10(1): 21-38. https://doi.org/10.46690/ager.2023.10.0

    Therblig-embedded value stream mapping method for lean energy machining

    Get PDF
    To improve energy efficiency, extensive studies have focused on the cutting parameters optimization in the machining process. Actually, non-cutting activities (NCA) occur frequently during machining and this is a promising way to save energy through optimizing NCA without changing the cutting parameters. However, it is difficult for the existing methods to accurately determine and reduce the energy wastes (EW) in NCA. To fill this gap, a novel Therblig-embedded Value Stream Mapping (TVSM) method is proposed to improve the energy transparency and clearly show and reduce the EW in NCA. The Future-State-Map (FSM) of TVSM can be built by minimizing non-cutting activities and Therbligs. By implementing the FSM, time and energy efficiencies can be improved without decreasing the machining quality, which is consistent with the goal of lean energy machining. The method is validated by a machining case study, the results show that the total energy is reduced by 7.65%, and the time efficiency of the value-added activities is improved by 8.12% , and the energy efficiency of value-added activities and Therbligs are raised by 4.95% and 1.58%, respectively. This approach can be applied to reduce the EW of NCA, to support designers to design high energy efficiency machining processes during process planning

    An investigation into reducing the spindle acceleration energy consumption of machine tools

    Get PDF
    Machine tools are widely used in the manufacturing industry, and consume large amount of energy. Spindle acceleration appears frequently while machine tools are working. It produces power peak which is highly energy intensive. As a result, a considerable amount of energy is consumed by this acceleration during the use phase of machine tools. However, there is still a lack of understanding of the energy consumption of spindle acceleration. Therefore, this research aims to model the spindle acceleration energy consumption of computer numerical control (CNC) lathes, and to investigate potential approaches to reduce this part of consumption. The proposed model is based on the principle of spindle motor control and includes the calculation of moment of inertia for spindle drive system. Experiments are carried out based on a CNC lathe to validate the proposed model. The approaches for reducing the spindle acceleration energy consumption were developed. On the machine level, the approaches include avoiding unnecessary stopping and restarting of the spindle, shortening the acceleration time, lightweight design, proper use and maintenance of the spindle. On the system level, a machine tool selection criterion is developed for energy saving. Results show that the energy can be reduced by 10.6% to more than 50% using these approaches, most of which are practical and easy to implement
    corecore