7,465 research outputs found

    Methods for Nonparametric and Semiparametric Regressions with Endogeneity: a Gentle Guide

    Get PDF
    This paper reviews recent advances in estimation and inference for nonparametric and semiparametric models with endogeneity. It ļ¬rst describes methods of sieves and penalization for estimating unknown functions identiļ¬ed via conditional moment restrictions. Examples include nonparametric instrumental variables regression (NPIV), nonparametric quantile IV regression and many more semi-nonparametric structural models. Asymptotic properties of the sieve estimators and the sieve Wald, quasi-likelihood ratio (QLR) hypothesis tests of functionals with nonparametric endogeneity are presented. For sieve NPIV estimation, the rate-adaptive data-driven choices of sieve regularization parameters and the sieve score bootstrap uniform conļ¬dence bands are described. Finally, simple sieve variance estimation and over-identiļ¬cation test for semiparametric two-step GMM are reviewed. Monte Carlo examples are included

    SRoUDA: Meta Self-training for Robust Unsupervised Domain Adaptation

    Full text link
    As acquiring manual labels on data could be costly, unsupervised domain adaptation (UDA), which transfers knowledge learned from a rich-label dataset to the unlabeled target dataset, is gaining increasing popularity. While extensive studies have been devoted to improving the model accuracy on target domain, an important issue of model robustness is neglected. To make things worse, conventional adversarial training (AT) methods for improving model robustness are inapplicable under UDA scenario since they train models on adversarial examples that are generated by supervised loss function. In this paper, we present a new meta self-training pipeline, named SRoUDA, for improving adversarial robustness of UDA models. Based on self-training paradigm, SRoUDA starts with pre-training a source model by applying UDA baseline on source labeled data and taraget unlabeled data with a developed random masked augmentation (RMA), and then alternates between adversarial target model training on pseudo-labeled target data and finetuning source model by a meta step. While self-training allows the direct incorporation of AT in UDA, the meta step in SRoUDA further helps in mitigating error propagation from noisy pseudo labels. Extensive experiments on various benchmark datasets demonstrate the state-of-the-art performance of SRoUDA where it achieves significant model robustness improvement without harming clean accuracy. Code is available at https://github.com/Vision.Comment: This paper has been accepted for presentation at the AAAI202

    TLHNMDA: Triple Layer Heterogeneous Network Based Inference for MiRNA-Disease Association Prediction

    Get PDF
    In recent years, microRNAs (miRNAs) have been confirmed to be involved in many important biological processes and associated with various kinds of human complex diseases. Therefore, predicting potential associations between miRNAs and diseases with the huge number of verified heterogeneous biological datasets will provide a new perspective for disease therapy. In this article, we developed a novel computational model of Triple Layer Heterogeneous Network based inference for MiRNA-Disease Association prediction (TLHNMDA) by using the experimentally verified miRNA-disease associations, miRNA-long noncoding RNA (lncRNA) interactions, miRNA function similarity information, disease semantic similarity information and Gaussian interaction profile kernel similarity for lncRNAs into an triple layer heterogeneous network to predict new miRNA-disease associations. As a result, the AUCs of TLHNMDA are 0.8795 and 0.8795 Ā± 0.0010 based on leave-one-out cross validation (LOOCV) and 5-fold cross validation, respectively. Furthermore, TLHNMDA was implemented on three complex human diseases to evaluate predictive ability. As a result, 84% (kidney neoplasms), 78% (lymphoma) and 76% (prostate neoplasms) of top 50 predicted miRNAs for the three complex diseases can be verified by biological experiments. In addition, based on the HMDD v1.0 database, 98% of top 50 potential esophageal neoplasms-associated miRNAs were confirmed by experimental reports. It is expected that TLHNMDA could be a useful model to predict potential miRNA-disease associations with high prediction accuracy and stability

    Combining Cloud Computing and Artificial Intelligence Scene Recognition in Real-time Environment Image Planning Walkable Area

    Get PDF
    This study developed scene recognition and cloud computing technology for real-time environmental image-based regional planning using artificial intelligence. TensorFlow object detection functions were used for artificial intelligence technology. First, an image from the environment is transmitted to a cloud server for cloud computing, and all objects in the image are marked using a bounding box method. Obstacle detection is performed using object detection, and the associated technique algorithm is used to mark walkable areas and relative coordinates. The results of this study provide a machine vision application combined with cloud computing and artificial intelligence scene recognition that can be used to complete walking space activities planned by a cleaning robot or unmanned vehicle through real-time utilization of images from the environment

    Two-stage Autoencoder Neural Network for 3D Speech Enhancement

    Full text link
    3D speech enhancement has attracted much attention in recent years with the development of augmented reality technology. Traditional denoising convolutional autoencoders have limitations in extracting dynamic voice information. In this paper, we propose a two-stage autoencoder neural network for 3D speech enhancement. We incorporate a dual-path recurrent neural network block into the convolutional autoencoder to iteratively apply time-domain and frequency-domain modeling in an alternate fashion. And an attention mechanism for fusing the high-dimension features is proposed. We also introduce a loss function to simultaneously optimize the network in the time-frequency and time domains. Experimental results show that our system outperforms the state-of-the-art systems on the dataset of ICASSP L3DAS23 challenge.Comment: 5 pages,5 figure
    • ā€¦
    corecore