34,091 research outputs found

    Macroscopic quantum coherence in antiferromagnetic molecular magnets

    Full text link
    The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model. On the basis of instanton technique in the spin-coherent-state path-integral representation, both the rigorous Wentzel-Kramers-Brillouin exponent and preexponential factor for the ground-state tunnel splitting are obtained. We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys. Rev. Lett. 80, 169 (1998)), but also have great influnence on the intensity of the ground-state tunnel splitting. Those features clearly have no analogue in the ferromagnetic molecular magnets. We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets. The analytical results are complemented by exact diagonalization calculation.Comment: 6 pages, 1 figur

    Effects of arbitrarily directed field on spin phase oscillations in biaxial molecular magnets

    Full text link
    Quantum phase interference and spin-parity effects are studied in biaxial molecular magnets in a magnetic field at an arbitrarily directed angle. The calculations of the ground-state tunnel splitting are performed on the basis of the instanton technique in the spin-coherent-state path-integral representation, and complemented by exactly numerical diagonalization. Both the Wentzel-Kramers-Brillouin exponent and the preexponential factor are obtained for the entire region of the direction of the field. Our results show that the tunnel splitting oscillates with the field for the small field angle, while for the large field angle the oscillation is completely suppressed. This distinct angular dependence, together with the dependence of the tunnel splitting on the field strengh, provide an independent test for spin-parity effects in biaxial molecular magnets. The analytical results for the molecular Fe8_{8} magnet, are found to be in good areement with the numerical simulations, which suggests that even the molecular magnet with total spin S=10 is large enough to be treated as a giant spin system.Comment: 19 pages, 5 figure

    Fast Non-Parametric Learning to Accelerate Mixed-Integer Programming for Online Hybrid Model Predictive Control

    Full text link
    Today's fast linear algebra and numerical optimization tools have pushed the frontier of model predictive control (MPC) forward, to the efficient control of highly nonlinear and hybrid systems. The field of hybrid MPC has demonstrated that exact optimal control law can be computed, e.g., by mixed-integer programming (MIP) under piecewise-affine (PWA) system models. Despite the elegant theory, online solving hybrid MPC is still out of reach for many applications. We aim to speed up MIP by combining geometric insights from hybrid MPC, a simple-yet-effective learning algorithm, and MIP warm start techniques. Following a line of work in approximate explicit MPC, the proposed learning-control algorithm, LNMS, gains computational advantage over MIP at little cost and is straightforward for practitioners to implement

    Low energy exciton states in a nanoscopic semiconducting ring

    Full text link
    We consider an effective mass model for an electron-hole pair in a simplified confinement potential, which is applicable to both a nanoscopic self-assembled semiconducting InAs ring and a quantum dot. The linear optical susceptibility, proportional to the absorption intensity of near-infrared transmission, is calculated as a function of the ring radius % R_0. Compared with the properties of the quantum dot corresponding to the model with a very small radius R0R_0, our results are in qualitative agreement with the recent experimental measurements by Pettersson {\it et al}.Comment: 4 pages, 4 figures, revised and accepted by Phys. Rev.

    Effective tuning of exciton polarization splitting in coupled quantum dots

    Full text link
    The polarization splitting of the exciton ground state in two laterally coupled quantum dots under an in-plane electric field is investigated and its effective tuning is designed. It is found that there are significant Stark effect and anticrossing in energy levels. Due to coupling between inter- and intra-dot states, the absolute value of polarization splitting is significantly reduced, and it could be tuned to zero by the electric field for proper inter-dot separations. Our scheme is interesting for the research on the quantum dots-based entangled-photon source.Comment: 4 pages, 2 figures, to appear in Appl. Phys. Let
    • …
    corecore