2,375 research outputs found

    Macroscopic quantum coherence in antiferromagnetic molecular magnets

    Full text link
    The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model. On the basis of instanton technique in the spin-coherent-state path-integral representation, both the rigorous Wentzel-Kramers-Brillouin exponent and preexponential factor for the ground-state tunnel splitting are obtained. We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys. Rev. Lett. 80, 169 (1998)), but also have great influnence on the intensity of the ground-state tunnel splitting. Those features clearly have no analogue in the ferromagnetic molecular magnets. We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets. The analytical results are complemented by exact diagonalization calculation.Comment: 6 pages, 1 figur

    Effects of arbitrarily directed field on spin phase oscillations in biaxial molecular magnets

    Full text link
    Quantum phase interference and spin-parity effects are studied in biaxial molecular magnets in a magnetic field at an arbitrarily directed angle. The calculations of the ground-state tunnel splitting are performed on the basis of the instanton technique in the spin-coherent-state path-integral representation, and complemented by exactly numerical diagonalization. Both the Wentzel-Kramers-Brillouin exponent and the preexponential factor are obtained for the entire region of the direction of the field. Our results show that the tunnel splitting oscillates with the field for the small field angle, while for the large field angle the oscillation is completely suppressed. This distinct angular dependence, together with the dependence of the tunnel splitting on the field strengh, provide an independent test for spin-parity effects in biaxial molecular magnets. The analytical results for the molecular Fe8_{8} magnet, are found to be in good areement with the numerical simulations, which suggests that even the molecular magnet with total spin S=10 is large enough to be treated as a giant spin system.Comment: 19 pages, 5 figure

    Low energy exciton states in a nanoscopic semiconducting ring

    Full text link
    We consider an effective mass model for an electron-hole pair in a simplified confinement potential, which is applicable to both a nanoscopic self-assembled semiconducting InAs ring and a quantum dot. The linear optical susceptibility, proportional to the absorption intensity of near-infrared transmission, is calculated as a function of the ring radius % R_0. Compared with the properties of the quantum dot corresponding to the model with a very small radius R0R_0, our results are in qualitative agreement with the recent experimental measurements by Pettersson {\it et al}.Comment: 4 pages, 4 figures, revised and accepted by Phys. Rev.

    Resonant quantum coherence of magnetization at excited states in nanospin systems with different crystal symmetries

    Full text link
    The quantum interference effects induced by the Wess-Zumino term, or Berry phase are studied theoretically in resonant quantum coherence of magnetization vector between degenerate excited states in nanometer-scale single-domain ferromagnets in the absence of an external magnetic field. By applying the periodic instanton method in the spin-coherent-state path integral, we evaluate the low-lying tunnel splittings between degenerate excited states of neighboring wells. And the low-lying energy level spectrum of m-th excited states are obtained with the help of the Bloch theorem in one-dimensional periodic potential.Comment: 23 pages, final version and accepted by Eur. Phys. J.

    Non-equilibrium dynamics of simple spherical spin models

    Get PDF
    We investigate the non-equilibrium dynamics of spherical spin models with two-spin interactions. For the exactly solvable models of the d-dimensional spherical ferromagnet and the spherical Sherrington-Kirkpatrick model the asymptotic dynamics has for large times and for large waiting times the same formal structure. In the limit of large waiting times we find in both models an intermediate time scale, scaling as a power of the waiting time with an exponent smaller than one, and thus separating the time-translation invariant short-time dynamics from the aging regime. It is this time scale on which the fluctuation-dissipation regime is violated. Aging in these models is similar to that observed in spin glasses at the level of correlation functions, but different at the level of response functions, and thus different at the level of experimentally accessible quantities like the thermoremanent magnetization.Comment: 8 pages, 1 eps figur

    Thermally stable p-wave repulsive Fermi polaron without a two-body bound state

    Full text link
    We theoretically investigate the polaron physics of an impurity immersed in a two-dimensional Fermi sea, interacting via a p-wave interaction at finite temperature. In the unitary limit with a divergent scattering area, we find a well-defined repulsive Fermi polaron at short interaction range, which shows a remarkable thermal stability with increasing temperature. The appearance of such a stable repulsive Fermi polaron in the resonantly interacting limit can be attributed to the existence of a quasi-bound dressed molecule state hidden in the two-particle continuum, although there is no bound state in the two-particle limit. We show that the repulsive Fermi polaron disappears when the interaction range increases or when the scattering area is tuned to the weakly-interacting regime. The large interaction range and small scattering area instead stabilize attractive Fermi polarons.Comment: 9 pages, 7 figure
    • …
    corecore