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We investigate the non-equilibrium dynamics of spherical spin models with two-spin interac-
tions. For the exactly solvable models of the d-dimensional spherical ferromagnet and the spherical
Sherrington-Kirkpatrick (SK) model the asymptotic dynamics has for large times and large waiting
times the same formal structure. In the limit of large waiting times we find in both models an
intermediate time scale, scaling as a power of the waiting time with an exponent smaller than one,
and thus separating the time-translation-invariant short-time dynamics from the aging regime. It
is this time scale on which the fluctuation-dissipation theorem is violated. Aging in these models
is similar to that observed in spin glasses at the level of correlation functions, but different at the
level of response functions, and thus different at the level of experimentally accessible quantities like
thermoremanent magnetization.

I. INTRODUCTION

There exist many systems which exhibit relaxation
times long enough to keep them from reaching equilib-
rium on experimental time scales. Primary examples are
spin glasses and polymer glasses, but also systems as sim-
ple as the Ising model when prepared in an arbitrary ini-
tial state, or phase separation dynamics in systems with
conserved parameter such as Ostwald ripening in binary
alloys. As a consequence, the relaxation depends for all
these system on the waiting time tw already spent in the
low temperature phase: the systems age. To understand
the aging phenomena observed in these models one has
to investigate their non-equilibrium dynamics.
In this context the investigation of the non-equilibrium

dynamics of spherical spin models with two-spin interac-
tions is interesting because they exhibit nontrivial dy-
namical behaviour, despite their simplicity, which makes
their non-equilibrium dynamics exactly solvable. These
systems never reach equilibrium, hence correlation and
response functions depend on the waiting time even in
the limit of large times6,7,9.
Our main aim is to complete for this class of models the

analysis of the spherical SK model presented in9 by iden-
tifying all relevant time scales of the problem. We are
going to show that, in addition to the two time regimes
found in9, there exists an intermediate time scale tp ≫ 1
satisfying tp/tw → 0 for tw → ∞. It is this intermediate
time scale on which the fluctuation dissipation theorem
is beginning to be violated. Interest in this time scale
stems from the fact that a thorough understanding of the
dynamics at these intermediate times is important with
respect to the study of the non-equilibrium dynamics in
models more complicated than those considered in the
present paper, such as that of the spherical p-spin glass
with p > 2, because it is the behaviour at the time scale
tp which determines the behaviour at the time scale tw in
a unique way. It is thus the key ingredient towards the so-
lution of the so far unsolved problem of selecting a unique
solution within an infinite family of time reparametriza-

tion covariant solutions on diverging time scales, as has
been demonstrated within a multi-domain crossover scal-
ing approach for the closely related problem of a slowly
dragged particle in a random potential12. The analysis
of the simple spherical spin models is presented here, be-
cause their behaviour at the intermediate time scale can
be studied analytically and in instructive detail.
Moreover we shall see that, despite the similarity of

these models to the more difficult case of the spherical
p-spin glass, their dynamics is not spin glass dynamics.
This has been realized for some time from considerations
concerning fluctuation dissipation ratios or parametric
plots of an integrated response versus correlation (see
e.g.6,11). Alternatively, one may look at the thermorema-
nent magnetization (another form of integrated response)
as a quantity sensitive to the complicated phase space
structure, to distinguish spin glasses from the simpler
magnetic systems. While the thermoremanent magneti-
zation, when plotted against logarithmic time, exhibits
a waiting time dependent plateau in spin glasses, this
plateau is absent in the models considered here.
We have organized our material as follows. In Sec. II

we introduce the models and briefly review the general
method for solving their non-equilibrium dynamics, as
first presented in9. In Sec. III we specialize to the spher-
ical SK model and to d dimensional hyper-cubic spherical
ferromagnets, which independently of the dimension d of
the latter, exhibit formally the same type of long time
non-equilibrium dynamics; exponents describing the de-
cay of correlation and response for the latter vary, of
course, with d. Time scales are identified and analyzed
in Sec. IV, while Sec. 5 contains a discussion of our
results.

II. THE MODEL

We consider spherical spin models with two spin in-
teractions consisting of N continuous spins si(t), i =
1, . . . , N , which satisfy for all times t the spherical con-
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straint
∑N

i=1 si
2(t) = N . The Hamiltonian of the system

is given by

H = −
1

2

∑

i6=j

Jijsisj . (1)

The coupling matrix Jij is supposed to be an arbi-
trary symmetric matrix. Denoting the eigenvalues of the
matrix J by ai, i = 1, . . . , N , the system of Langevin
equations, which describes the dynamics of the model,
decouples in terms of the projections sai

(t) of the spins
si(t) onto the eigenvectors

∂tsai
(t) = (ai − µ(t))sai

(t) + hai
(t)+ξai

(t) ,

i = 1, . . . , N , (2)

where hai
(t) is the corresponding component of an ex-

ternal magnetic field and ξai
(t) is thermal Gaussian

white noise with zero mean and correlation 〈ξai
(τ +

tw)ξaj
(tw)〉 = 2Tδijδ(τ). The parameter µ(t) is the

Lagrange multiplier enforcing the spherical constraint.
Henceforth we will use 〈·〉 to represent the average
over the thermal noise. If it were not for the La-
grange parameter µ(t), the dynamics (2) would just
be that of N independent harmonic oscillators un-
der the influence of thermal noise. This means that
solving the non-equilibrium dynamics of these mod-
els reduces to determining µ(t). It was shown in
reference9 that for a given waiting time tw and given
time separation τ ≥ 0 the autocorrelation q(τ, tw) :=

1/N
[

∑N
i=1〈si(τ + tw)si(tw)〉

]

J
and response function

r(τ, tw) := 1/N
[

∑N
i=1 δ 〈si(τ + tw)〉/δhi(tw)|h=0

]

J
of

this class of models are in terms of

Λ(t) := exp

(

2

∫ t

0

ds µ(s)

)

(3)

given by

q(τ, tw) =
Λ(tw + τ/2)

√

Λ(τ + tw)Λ(tw)

[

1− (4)

T

∫ τ

0

ds
Λ(tw + τ/2− s/2)

Λ(tw + τ/2)
〈〈exp(as)〉〉

]

and

r(τ, tw) =

√

Λ(tw)

Λ(τ + tw)
〈〈exp(aτ)〉〉 , (5)

where we have specialized the expressions in9 to the case
of zero external field and constant temperature T and
have chosen the initial condition to be sai

(t = 0) = 1. By
[·]J we have denoted a possible disorder average and by
〈〈·〉〉 we denote the integration

∫

da ρ(a)· over an eigen-
value density ρ(a) which in the thermodynamic limit
N → ∞ describes the distribution of eigenvalues of the

coupling matrix J . The quantity Λ(t) itself is determined
by

Λ(t) = 〈〈exp(2at)〉〉+ 2T

∫ t

0

dsΛ(s)〈〈exp(2a(t− s))〉〉 ,

(6)

which together with (4) immediately implies Λ(0) =
q(0, tw) = 1. Another dynamical observable we will
be interested in is the thermoremanent magnetization
mr(τ, tw). Given that the system is kept in a small mag-
netic field h in the time interval [0, tw] , the magnetization
measured at time τ + tw is given by

mr(τ, tw) = h

∫ tw

0

ds r(τ + s, tw − s) . (7)

For models such as the d dimensional ferromagnets con-
sidered in what follows, in which the interaction matrix
has a geometrical structure, off-diagonal correlations of
the form qij(τ, tw) = 〈si(τ + tw)sj(tw)〉 are of course also
of interest. We have not investigated them in the present
paper, however, as our main interest here is in results
which will have further bearing on spin glass models of
the mean field type.

III. SPHERICAL SK MODEL AND SPHERICAL

FERROMAGNET

While the expressions given so far are valid for any
choice of the coupling matrix J we now want to treat
two special cases. Our aim is to solve the non-equilibrium
dynamics of these particular models in the limit of large
waiting times tw ≫ 1 by explicitly determining Λ(t). As
we are only interested in the behaviour of the dynamical
observables for times τ, tw ≫ 1 it is sufficient to deter-
mine the asymptotic behaviour of Λ(t) for t ≫ 1. In
the following we will discuss the d-dimensional spheri-
cal ferromagnet and the spherical SK model. The latter
is the special case p = 2 of the disordered spherical p-
spin model and we will present the results found in9 in a
slightly different form.
In the case of the spherical ferromagnet we consider

a d-dimensional hyper-cubic lattice with periodic bound-
ary conditions, whose lattice constant we take to be unity
and whose lattice sites with coordinate vectors ~xi are oc-
cupied by spins si. The couplings are chosen to be ferro-
magnetic nearest neighbour interactions, whose strength
is set to unity. The standard diagonalization procedure
using Fourier modes3 yields for this choice of the matrix
J in the limit N → ∞ for the spectrum of eigenvalues
and the eigenvalue density ρfm(a) the result

ρfm(a) =
1

π

∫ ∞

0

dy cos(ay)[J0(2y)]
d
,

a ∈ [−2d, 2d] , (8)
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where J0(y) denotes the Bessel function of zeroth order.
The spherical SK model is defined by choosing the cou-

pling matrix J to be a random matrix whose entries
Jij are independent and identically distributed Gaus-
sian random variables with zero mean and variance
[(Jij)

2]J = 1/N . A general result of random matrix
theory17 states that, for this choice of J , the eigenvalue
density in the thermodynamic limit ρsk is given by the
Wigner semi-circle law

ρsk(a) =
1

2π

√

4− a2 , a ∈ [−2, 2] . (9)

Solving the non-equilibrium dynamics of these mod-
els means solving (6) for the eigenvalue densities (8)
and (9). This is best done using the Laplace transform

Λ̃(s) =
∫∞

0 dtΛ(t) exp(−st) to obtain from (6) for t > 0
the relation

Λ̃(s) =
f̃(s)

1− 2T f̃(s)
, (10)

where the function f̃(s) := 〈〈1/(s− 2a)〉〉 is character-
istic of the given model. In terms of the function f(t),

which yields f̃(s) via Laplace transformation, the expres-
sions (4) and (5) can be rewritten as

q(τ, tw) =
Λ(tw + τ/2)

√

Λ(τ + tw)Λ(tw)

[

1 (11)

−
1

2
T

∫ 2τ

0

dx
Λ(tw + τ/2− x/4)

Λ(tw + τ/2)
f(x/4)

]

.

and

r(τ, tw) =

√

Λ(tw)

Λ(τ + tw)
f(τ/2) , (12)

respectively. Inserting the expressions for the eigenvalue
densities (8) and (9) in the definition of f̃(s) we find that
in the case of the spherical ferromagnet the function f(t)
is given by

ffm(t) = [I0(4t)]
d , (13)

while for the spherical SK model it is calculated to be

f sk(t) =
I1(4t)

2t
. (14)

In these expressions I0(t) and I1(t) denote the modified
Bessel function of zeroth and first order, respectively.
The critical temperature of the dynamic phase transi-

tion is found from (10) to be

Tc =
1

2f̃(2am)
, (15)

where am denotes the maximal eigenvalue of the eigen-
value spectrum [−am, am] of the corresponding model. In

the special cases considered here we have afmm = 2d and
askm = 2. Expression (15) implies in the case of the spher-
ical ferromagnet that we get a phase transition in d > 2
only. For the spherical SK model the critical tempera-
ture can be calculated explicitly and one finds T sk

c = 1.
These results are in both models in agreement with the
ones obtained from static calculations of the transition
temperature4,15.
In the following we will only be interested in the low

temperature phase with T < Tc. In this phase the asymp-
totic behaviour of Λ(t) for large times t is determined by

the behaviour of the Laplace transform Λ̃(s) at the right
bound s = 2am of the branch cut. In the case of the
spherical SK-model the inverse Laplace transformation
can be done exactly and the result found in9 reads

Λsk(t) =
1

T

∞
∑

k=1

kT k Ik(4t)

2t
. (16)

For the spherical ferromagnet there is no simple analytic
expression, but we can find the leading asymptotic be-
haviour for t ≫ 1 in integer dimension d > 2 by expand-
ing Λ̃(s) around s = 2am and performing the inverse
Laplace transformation. Performing this calculation and
comparing the result with the leading order of expression
(16) for large times t ≫ 1, we find that in both models
the leading asymptotic behaviour of Λ(t) for t ≫ 1 can
be written as

Λ(t) ≃
Λ0

(1− T/Tc)2
e2amt

tνs
t ≫ 1 , (17)

where the prefactor Λ0 is given by Λfm
0 = (8π)−νs for the

spherical ferromagnet and by Λsk
0 = (32π)1−νs for the

spherical SK model. The exponent νs appearing in these
expressions is νfms = d/2 for the spherical ferromagnet
and νsks = 3/2 for the spherical SK model. In the same
way it follows from (13) and (14) that the asymptotic
behaviour of f(t) can in both models be written as

f(t) ≃ Λ0
e2amt

tνs
t ≫ 1 , (18)

with the same factor Λ0 as in (17). These two formulas
indicate already the close correspondence of the asymp-
totic behaviour of autocorrelation and response function
in both models which we will study in more detail in the
following section. We will see that we can write the ex-
pressions for these dynamical observables for both mod-
els in a unified way using the exponent νs defined above.
This means in particular that we will find the same time
scales appearing in the limit of large waiting times tw
and large time separations τ .

IV. ASYMPTOTIC DYNAMICS AND TIME

SCALES

Before entering the discussion of the asymptotic be-
haviour for large waiting times tw, we want to present
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for later reference the expressions for correlation and re-
sponse function for finite waiting time tw ∼ 1 and large
times τ ≫ 1. Using (17) and (18) in the terms contain-
ing the time variable t in (11) and (12) we obtain for the
autocorrelation

q(τ, tw) ∼ fq(tw)τ
−νs/2 τ ≫ tw ≃ 1 , (19)

where fq(tw) ≃ 1 for tw ∼ 1, and for the response

r(τ, tw) ≃ fr(tw)τ
−νs/2 τ ≫ tw ≃ 1 , (20)

where again fr(tw) ∼ 1.
We are, however, mainly interested in the case of large

waiting times tw ≫ 1 and large time separations τ ≫ 1.
In this case we can insert the asymptotic expansions (17)
and (18) in expressions (11) and (12) and get for τ, tw ≫
1

q(τ, tw)≃

(

1 + τ
tw

)νs/2

(

1 + τ
2tw

)νs × (21)

[

1−
1

2
T

∫ 2τ

0

dx e−amx/2 f(x/4)
(

1− x
4tw(1+τ/2tw)

)νs

]

for the leading asymptotic behaviour of the autocorrela-
tion and

r(τ, tw) ≃ b

(

1 +
τ

tw

)νs/2

τ−νs (22)

for the response. The prefactor b is bfm = (4π)−νs in
the case of the ferromagnet and bsk = (4π)1−νs for the
SK model. These equations show that the asymptotic
dynamics in the limit τ, tw ≫ 1 of the spherical ferro-
magnet and the spherical SK model possesses the same
formal structure. In particular we find that the scaling
behaviour of the dynamical observables autocorrelation
and response of the spherical ferromagnet in d = 3 and
the spherical SK model is equivalent (on the level of ex-
ponents). This result was independently stated in6. The
formal correspondence of the two models implies in par-
ticular that in both models the same characteristic time
scales appear.
Before entering the discussion of the relevant time

scales in the problem, let us simplify expression (21) fur-
ther. Expanding the denominator of the integrand in this
expression in a power series, one can prove that in the
limit of large waiting times tw ≫ 1 the dominant contri-
bution to the integral comes for all times τ ≫ 1 from the
zeroth order term of the expansion. Defining

qp := 1−
T

2

∫ ∞

0

dx e−amx/2f(x/4) = 1−
T

Tc
, (23)

where the last equality follows from (15), we find

q(τ, tw) ≃

(

1 + τ
tw

)νs/2

(

1 + τ
2tw

)νs

(

qp + c0τ
1−νs

)

(24)

for the leading behaviour of the autocorrelation in the
limit τ, tw ≫ 1, in which c0 = bT/(νs − 1).
Using (22) and (24) it is now straightforward to iden-

tify the different time scales of the problem. At first sight
we find the two time scales already discussed in9 for the
case of the spherical SK model. The first is the time scale
t0 ∼ 1 of the microscopic relaxation. At the upper end
of this scale we have τ ≫ 1 but still τ/tw ≪ 1, such that
we can neglect all waiting time dependent corrections.
On this time scale the dynamics corresponds to the dy-
namics in equilibrium, i. e. it is time translation invari-
ant with autocorrelation q(τ, tw) = q̃0(τ0) and response
r(τ, tw) = r̃0(τ0) being functions of the scaling variable
τ0 := τ/t0 only, and autocorrelation and response satisfy
the FDT −∂τ q̃0(τ0) = T r̃0(τ0) of equilibrium dynamics.
Therefore we will refer to this time scale as the FDT
regime. At the upper end τ0 ≫ 1 of this scale the re-
sponse is found from (22) to be

r(τ, tw) = r̃0(τ0) ≃ b̂0 τ
−νs
0 , (25)

with b̂0 = bt−νs
0 , while (24) implies for the correlation

q(τ) = q̃0(τ0) ≃ qp + ĉ0τ
1−νs
0 (26)

with ĉ0 = c0t
1−νs
0 . This corresponds to a power law decay

of the correlation to a plateau value qp, which in the
case of the spherical ferromagnet is just the square of
the static spontaneous magnetization 〈si〉

24, while in the
case of the spherical SK model it is the static Edwards-
Anderson parameter qEA =

[

〈si〉
2
]

J
9,15. The exponent

of the decay is

ν0 := 1− νs (27)

which in the case of the spherical SK model is just the
special case p = 2 of the result found in8 for the equi-
librium decay of the correlation of the spherical p-spin
glass. If we speak of a plateau in the correlation, it is of
course understood that this plateau in the autocorrela-
tion is only visible in a plot against the logarithm of time
τ .
The second obvious time scale is the waiting time it-

self. For τ ∼ tw correlation and response can be written
as functions of the scaling variable τw := τ/tw and one
finds asymptotically for τw ≫ 1 power law decays of the
dynamical observables to zero9.
From (22) it is obvious that these two are the only time

scales which can be identified from the behaviour of the
response function. However, it turns out that there exists
a further nontrivial time scale in the problem, which can
be identified from the autocorrelation function. Looking
at expression (24) and taking into account the leading
waiting time dependent correction in the prefactor we
arrive at
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q(τ, tw) ≃

(

1−
νs
8

(

τ

tw

)2
)

(

qp + c0τ
1−νs

)

. (28)

This expression shows that there exists a waiting time
dependent scale tp(tw), on which the correlation be-
gins to decay away from the plateau value qp. To be
more precise, we define this time scale tp by requiring
q(tp, tw) = qp, such that tp corresponds to the middle of
the plateau of the correlation function. This means that
tp is the time for which the competing corrections in (28)
are of the same order of magnitude. Hence we find that
the time scale tp(tw) scales as

tp(tw) ∼ tw
2/(1+νs) ≪ tw (29)

with the waiting time tw. The latter inequality follows
as νs > 1. The plateau regime corresponding to time
scale tp is the so far missing link between the stationary
dynamics within the FDT regime and the non-stationary
dynamics for times of the order of the waiting time tw
itself. We will shortly see that it is in particular the
time scale on which the FDT of equilibrium dynamics is
violated.
In terms of the scaling variable τp := τ/tp, the corre-

lation within the plateau regime τ ∼ tp can be expressed
in the scaling form

q(τ, tw) = qp + q̂p(tw)q̃p(τp) (30)

with the prefactor q̂p(tw) = t
−2(νs−1)/(νs+1)
w ∼ tν0p and

the scaling function

q̃p(τp) ≃ c0τ
ν0
p + cpτp

ν1 (31)

in which cp = − νs
8 qp and ν1 = 2 (recall that ν0 = 1 −

νs < 0). This scaling function describes the decay of the
correlation towards qp ad the lower end of the plateau
scale, i.e. for τp ≪ 1, and its subsequent decay away from
qp at the upper end of the plateau scale where τp ≫ 1.
In order to study the violation of the FDT we intro-

duce a quantity n(τ, tw) which characterizes this violation
quantitatively12 via

− ∂τ q(τ, tw) =: T (1 + n(τ, tw))r(τ, tw) . (32)

Note that differentiating with respect to the time sepa-
ration is equivalent to differentiating with respect to the
later time t. Alternatively one may differentiate with re-
spect to the earlier time tw. In the representation of the
correlation in terms of tw and time difference τ = t− tw
this gives rise to the corresponding definition

∂̂twq(τ, tw) =: T (1 + nw(τ, tw))r(τ, tw) , (33)

with ∂̂tw = ∂tw − ∂τ . The latter is related to the fluc-
tuation dissipation ratios X(τ, tw) studied e.g. in6,11 via
X(τ, tw) = 1/(1 + nw(τ, tw)). For τ, tw ≫ 1 we get

1 + n(τ, tw)≃
1

(

1 + τ
2tw

)νs × (34)

[

1 +
νsqp
4bT

τ1+νs

t2w

1
(

1 + τ
tw

)(

1 + τ
2tw

)

]

,

1 + nw(τ, tw)≃
1

(

1 + τ
2tw

)νs × (35)

[

1 +
νsqp
4bT

τ1+νs

t2w

1
(

1 + τ
2tw

)

]

.

Fig. 1 shows these two functions for T = 0.6Tc, and
tw = 1010 so that tp = 108.
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FIG. 1. 1 + n(τ, tw) and 1 + nw(τ, tw) as functions of τ
for tw = 1010. Vertical arrows mark the plateau scale tp(tw)
and the waiting time scale tw.

As we have seen before, the decay towards the plateau
satisfies the FDT, that is, we have in leading order
n(τ, tw) = nw(τtw) = 0 for τ ≪ tp. On the interme-

diate time scale tp = t
2/(1+νs)
w , however, we obtain the

scaling form

n(τ, tw) ≃ nw(τ, tw) ≃ ñ(τp) =
νsqp
4bT

τp
1+νs , (36)

which approaches zero at the lower end of the plateau
scale (where the FDT holds) but is non-zero (indicating
FDT violation) for all τp = O(1), and exhibits a power
law divergence at the upper end of the tp scale. This
can be traced back to the fact that the behaviour of the
response function r(τ, tw) does not change on the time
scale tp whereas that of the correlation does. It is this
divergence which is responsible for the fact noted in6,11

that parametric representations of integrated response
χ(τ, tw) =

∫ τ

0 dsr(s, tw+τ−s) versus correlation q(τ, tw)
saturate at the value χ = (1 − qp)/T for q(τ, tw) ≤ qp

5



for the models considered in the present paper. Note
that the nature of this divergence is in the large tw limit
of course not detectable in such parametric plots, as it
occurs entirely on the plateau scale, on which q(τ, tw)
is basically arrested at qp. It may however be obtained
from the finite tw-corrections to such plots which may be
extracted from (34) and (35).
Note that (34) and (35) imply that n and nw exhibit

different scaling on the tw scale. With τw = τ/tw we
have

1 + n(τ, tw)≃
1

(1 + τw/2)
νs × (37)

[

1 +
νsqp
4bT

tνs−1
w τ1+νs

w

1

(1 + τw) (1 + τw/2)

]

,

1 + nw(τ, tw)≃
1

(1 + τw/2)
νs × (38)

[

1 +
νsqp
4bT

tνs−1
w τ1+νs

w

1

(1 + τw/2)

]

,

implying that both are infinite in the tw → ∞ limit, but
show different behaviour at large τw when tw is large but
finite: Whereas 1 + n(τ, tw) ≃

νsqp
bT (2tw)

νs−1 τ−1
w → 0 as

τw → ∞, we have 1 + nw(τ, tw) ≃
νsqp
bT (2tw)

νs−1 in the
same limit.
To summarize, the FDT is broken already on the time

scale tp rather than only on the scale tw, the former be-
ing much smaller than the latter when tw becomes large,
since tp/tw → 0 as tw → ∞. Moreover, the divergence
of n and nw on the tp scale implies that the QFDT so-
lution, which was found in8 for the spherical p-spin glass
with p > 2 and in14 for manifolds in disordered poten-
tials, does not exist in the case of the spherical SK model
(and in the ferromagnetic systems). From (28) it is also
obvious that for the models considered here the plateau
regime tp is the only further time scale in the problem.
This, too, is in contrast to the expectations for spherical
p-spin glass with p > 2, which will be considered in a
forthcoming paper13.

V. DISCUSSION

Considering the simplicity of the models discussed in
the previous sections, the complexity of the dynamical
behaviour seems rather astonishing. However, in the case
of spherical ferromagnet the explicit dependence on the
waiting time of both correlation and response even in
the limit τ ≫ tw ≫ 1 is a well known result in the the-
ory of phase ordering kinetics7. According to the scaling
hypothesis of coarsening dynamics there exists for large
times t = τ + tw ≫ 1 a single length scale L(t) in the
system, which can be interpreted as the typical size of
a domain at time t. This means that for large times
t ≫ tw ≫ 1 the two-time-autocorrelation function of
such a system is a function of the ratio of the two length

scales L(t) ≫ L(tw) ≫ 1 only. The exact solution of
the phase ordering dynamics of the spherical ferromag-
net yields for the autocorrelation at T = 0 in the limit of
large times the result7

q(t− tw, tw) =

(

4ttw
(t+ tw)2

)d/4

, (39)

which is just equation (21) for T = 0.
It has been noted that aging behaviour in the correla-

tion functions of coarsening systems has a simple inter-
pretation in terms of domain growth7,6,11,5. This holds
in particular for the emergence of the plateau scale. Af-
ter the system has spent the waiting time tw ≫ 1 in the
low temperature phase, an arbitrary spin will on average
be found in a domain of size L(tw). The autocorrela-
tion of this spin will for short times decay towards qp,
which is the square of the local spontaneous magnetiza-
tion, due to spin fluctuations within this domain. This
decay is equivalent to a decay within a local equilibrium
state and satisfies time translational invariance and FDT.
The further asymptotic decay of the autocorrelation away
from this value qp towards zero can only be produced by
a change of the environment of the chosen spin, which
means that a domain wall has to pass by its site. As the
size of the original domain grows as a power of the wait-
ing time, it is very plausible that the time spent near the
plateau value should also grow as a power of the wait-
ing time. Since the growth of the domains and therefore
the wandering of the domain walls is a slow process the
asymptotic decay towards zero is also a slow power law
decay. For the spherical SK model, such arguments are
of course not available, as the model does not possess a
geometry.
At the heart of it, the formal equivalence of the asymp-

totic dynamics for τ, tw ≫ 1 of the spherical ferro-
magnet and the spherical SK model is due to the fact
that both interaction matrices exhibit eigenvalue densi-
ties ρ(a) whose behaviour at the upper end am of the
spectrum can be characterized by a power law

ρ(a) ∼ (am − a)νs−1 , as a → am , (40)

with the exponent νs introduced earlier. It is this fea-
ture which determines the behaviour of correlation and
response in these systems at τ, tw ≫ 1. The origin of
the power law may be disorder, as in the case of the SK
model and the semi-circle law, but it need not, as exem-
plified by the d-dimensional ordered systems. Thus aging
in the spherical SK model cannot be interpreted as spin
glass aging as it is observed experimentally16,1,2 as well
as in model calculations10 and simulations18. Indeed, it
is well known that from a static point of view this model
does not have the properties of a typical spin glass, as it
has a replica symmetric solution for all temperatures and
does not possess many degenerate ground states. The re-
sults above imply that the spherical SK model is neither
a spin glass from a dynamical point of view, despite the
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existence of a plateau in the correlation function as it is
observed in spin glasses and related systems8,12.
Obviously the autocorrelation is not a suitable quan-

tity to distinguish aging in a spin glass from the sim-
pler case of coarsening dynamics in magnetic systems,
whose nonequlibrium dynamics is determined by domain
growth. A dynamical observable which characterizes a
spin glass, however, is given by the thermoremanent mag-
netization defined in (7). This is due to the fact that it
is the response function which is most sensitive to the
complex phase space structure exhibited by spin glasses.
To be more precise, the particular metastable configura-
tions of a spinglass depend strongly on a magnetic field.
During the waiting time the system is expected to move
to configurations of increasing stability. On the other
hand, a state which is relatively stable in a given field
might become less stable if the field is slightly changed.
This means that, after a change of the field at tw, the
system has to move to new states of increasing stabil-
ity. The time scale of this process depends on the de-
gree of stability reached at tw. This leads to a plateau
in the thermoremanent magnetization similar to the one
found in the correlation function. This will be derived
for the spherical p-spin glass with p > 2 in a forthcoming
paper13. A mechanism of this kind is of course absent
in a coarsening system and as a consequence mr(τ, tw)
decays in the limit of large waiting times tw ≫ 1 for all
τ ≪ tw as

mr(τ, tw) ∼ τ1−νs . (41)

To prove this result, let us denote by t1(tw) a lower bound
of the waiting time scale satisfying τ ≪ t1 ≪ tw. Let us
further choose a time t2, such that tw − t2 ∼ 1. Then we
can split the integration in (7) as follows

mr(τ, tw) ≃ h
(

∫ t1

0

ds r(τ + s, tw) (42)

+

∫ t2

t1

ds r(s, tw − s) +

∫ tw

t2

ds r(s, tw − s)
)

.

Using (25) in the first integral we find that this term
yields the leading order contribution given in (41) as the
contribution from the upper bound is negligible in the
limit tw ≫ 1. In the last integral in (42) the argument
tw − s is always of order unity and with (20) we find
that it scales as tw

−νs/2 with the waiting time, such that
it is negligible in the limit of large waiting times. Thus
we just have to consider the contributions from the mid-
dle of the integration range for the remaining integral in
(42). Rewriting this integral in terms of the scaling vari-
able σ := s/tw we get using (22) that this term scales
as tw

1−νs which leads to (41) as the dominant contribu-
tion. Hence we have indeed found that in the type of
models considered here the thermoremanent magnetiza-
tion does not exhibit a plateau in the limit tw ≫ 1 nor
does it depend on the waiting time for all times t ≪ tw.
For coarsening systems this is what we expected as this

relaxation stems from spin fluctuations within a certain
domain, which do not know anything about the waiting
time. As noted in6,11 an alternative criterion to distin-
guish aging in coarsening systems from spin glass aging
is the integrated response χ(τ, tw) mentioned in Sec. IV.
Both, the saturation of χ(τ, tw) and the absence of a
plateau in the thermoremanent magnetization are due to
the same reason, namely due to the divergence of the
function n(τ, tw), equivalently due to the vanishing of
the fluctuation dissipation ratio X(τ, tw) on the plateau
scale.
Let us finally stress that the time scale tp also appears

in the more complicated case of the spherical p-spin glass
with p > 2, the spherical SK model being just the sim-
plest of this class of models, and it is the behaviour of cor-
relation and response on this time-scale which is needed
to uniquely fix the dynamics at later times. This will be
explicitly shown in a forthcoming paper13.
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