4,060 research outputs found
Unifying and Merging Well-trained Deep Neural Networks for Inference Stage
We propose a novel method to merge convolutional neural-nets for the
inference stage. Given two well-trained networks that may have different
architectures that handle different tasks, our method aligns the layers of the
original networks and merges them into a unified model by sharing the
representative codes of weights. The shared weights are further re-trained to
fine-tune the performance of the merged model. The proposed method effectively
produces a compact model that may run original tasks simultaneously on
resource-limited devices. As it preserves the general architectures and
leverages the co-used weights of well-trained networks, a substantial training
overhead can be reduced to shorten the system development time. Experimental
results demonstrate a satisfactory performance and validate the effectiveness
of the method.Comment: To appear in the 27th International Joint Conference on Artificial
Intelligence and the 23rd European Conference on Artificial Intelligence,
2018. (IJCAI-ECAI 2018
Using Adherence-Contingent Rebates on Chronic Disease Treatment Costs to Promote Medication Adherence: Results from a Randomized Controlled Trial
Background: Poor adherence to medications is a global public health concern with substantial health and cost implications, especially for chronic conditions. In the USA, poor adherence is estimated to cause 125,000 deaths and cost US5.94 as of 2 November 2017) per month during the intervention period.
Conclusion: This study shows that simultaneously leveraging several insights from behavioral economics can significantly
improve medication adherence rates. The relatively low cost of the rebates and significant health and cost implications of medication non-adherence suggest that this strategy has the potential to cost-effectively improve health outcomes for many conditions
Mobile game for the elderly: Bundled Bingo Game
The aim of this project is to develop a customized Bingo game based on the user interface guidelines that suit the elderly users. This project targeted to improve the cognitive ability of the elderly with the specifically designed gaming features. In this research, qualitative data will be used to analyze the confidence and acceptance level of the elderly on the mobile digital games, as well as to understand how the elderly interacts with current technologies (mobile devices) and the benefit they can gain from the mobile games. User testing, survey, and result analysis have been done with a group of elderly members from D’Happy club in Petaling Jaya, Malaysia. The results of this project contribute to the development of an elderly friendly mobile game to motivate the elderly’s engagement in mobile gaming, with the will that it could help to delay and decrease the risk of the elderly in developing the Alzheimer’s disease
Evaluation of Robust Feature Descriptors for Texture Classification
Texture is an important characteristic in real and
synthetic scenes. Texture analysis plays a critical role in inspecting
surfaces and provides important techniques in a variety of
applications. Although several descriptors have been presented to
extract texture features, the development of object recognition is still a
difficult task due to the complex aspects of texture. Recently, many
robust and scaling-invariant image features such as SIFT, SURF and
ORB have been successfully used in image retrieval and object
recognition. In this paper, we have tried to compare the performance
for texture classification using these feature descriptors with k-means
clustering. Different classifiers including K-NN, Naive Bayes, Back
Propagation Neural Network , Decision Tree and Kstar were applied in
three texture image sets - UIUCTex, KTH-TIPS and Brodatz,
respectively. Experimental results reveal SIFTS as the best average
accuracy rate holder in UIUCTex, KTH-TIPS and SURF is
advantaged in Brodatz texture set. BP neuro network works best in the
test set classification among all used classifiers
Evaluation of Robust Feature Descriptors for Texture Classification
Texture is an important characteristic in real and
synthetic scenes. Texture analysis plays a critical role in inspecting
surfaces and provides important techniques in a variety of
applications. Although several descriptors have been presented to
extract texture features, the development of object recognition is still a
difficult task due to the complex aspects of texture. Recently, many
robust and scaling-invariant image features such as SIFT, SURF and
ORB have been successfully used in image retrieval and object
recognition. In this paper, we have tried to compare the performance
for texture classification using these feature descriptors with k-means
clustering. Different classifiers including K-NN, Naive Bayes, Back
Propagation Neural Network , Decision Tree and Kstar were applied in
three texture image sets - UIUCTex, KTH-TIPS and Brodatz,
respectively. Experimental results reveal SIFTS as the best average
accuracy rate holder in UIUCTex, KTH-TIPS and SURF is
advantaged in Brodatz texture set. BP neuro network works best in the
test set classification among all used classifiers
Loop Formulas for Description Logic Programs
Description Logic Programs (dl-programs) proposed by Eiter et al. constitute
an elegant yet powerful formalism for the integration of answer set programming
with description logics, for the Semantic Web. In this paper, we generalize the
notions of completion and loop formulas of logic programs to description logic
programs and show that the answer sets of a dl-program can be precisely
captured by the models of its completion and loop formulas. Furthermore, we
propose a new, alternative semantics for dl-programs, called the {\em canonical
answer set semantics}, which is defined by the models of completion that
satisfy what are called canonical loop formulas. A desirable property of
canonical answer sets is that they are free of circular justifications. Some
properties of canonical answer sets are also explored.Comment: 29 pages, 1 figures (in pdf), a short version appeared in ICLP'1
- …