13,278 research outputs found

    Applying local cooccurring patterns for object detection from aerial images

    Full text link
    Developing a spatial searching tool to enhance the search car pabilities of large spatial repositories for Geographical Information System (GIS) update has attracted more and more attention. Typically, objects to be detected are represented by many local features or local parts. Testing images are processed by extracting local features which are then matched with the object's model image. Most existing work that uses local features assumes that each of the local features is independent to each other. However, in many cases, this is not true. In this paper, a method of applying the local cooccurring patterns to disclose the cooccurring relationships between local features for object detection is presented. Features including colour features and edge-based shape features of the interested object are collected. To reveal the cooccurring patterns among multiple local features, a colour cooccurrence histogram is constructed and used to search objects of interest from target images. The method is demonstrated in detecting swimming pools from aerial images. Our experimental results show the feasibility of using this method for effectively reducing the labour work in finding man-made objects of interest from aerial images. © Springer-Verlag Berlin Heidelberg 2007

    Facial expression recognition using histogram variances faces

    Full text link
    In human's expression recognition, the representation of expression features is essential for the recognition accuracy. In this work we propose a novel approach for extracting expression dynamic features from facial expression videos. Rather than utilising statistical models e.g. Hidden Markov Model (HMM), our approach integrates expression dynamic features into a static image, the Histogram Variances Face (HVF), by fusing histogram variances among the frames in a video. The HVFs can be automatically obtained from videos with different frame rates and immune to illumination interference. In our experiments, for the videos picturing the same facial expression, e.g., surprise, happy and sadness etc., their corresponding HVFs are similar, even though the performers and frame rates are different. Therefore the static facial recognition approaches can be utilised for the dynamic expression recognition. We have applied this approach on the well-known Cohn-Kanade AU-Coded Facial Expression database then classified HVFs using PCA and Support Vector Machine (SVMs), and found the accuracy of HVFs classification is very encouraging. © 2009 IEEE

    Relaxed 2-D Principal Component Analysis by LpL_p Norm for Face Recognition

    Full text link
    A relaxed two dimensional principal component analysis (R2DPCA) approach is proposed for face recognition. Different to the 2DPCA, 2DPCA-L1L_1 and G2DPCA, the R2DPCA utilizes the label information (if known) of training samples to calculate a relaxation vector and presents a weight to each subset of training data. A new relaxed scatter matrix is defined and the computed projection axes are able to increase the accuracy of face recognition. The optimal LpL_p-norms are selected in a reasonable range. Numerical experiments on practical face databased indicate that the R2DPCA has high generalization ability and can achieve a higher recognition rate than state-of-the-art methods.Comment: 19 pages, 11 figure

    Mitigating laser imprint with a foam overcoating

    Full text link
    Foam has been suggested to reduce laser imprint because of its low density. In this paper, the two-dimensional radiation hydrodynamic code FLASH is applied to investigate and characterize the strength of laser imprint through analyzing areal density perturbation. There are two important factors for the mitigation of laser imprint besides the thermal smoothing of the conduction region (between the ablation front and the critical density surface) and the mass ablation of the ablation front. First, radiation ablation dynamically modulates density distribution not only to increase the frequency of the perturbed ablation front oscillation but also to decrease the amplitude of oscillation. Second, a larger length of the shocked compression region reduces the amplitude of the perturbed shock front oscillation. The smaller the perturbation of both ablation front and shock front, the smaller the areal density perturbation. Based on the above physical mechanisms, the optimal way of mitigating laser imprint with foam is that the dynamically modulated density distribution further reduces the amplitude of perturbation reaching the solid CH when the areal density perturbation of foam oscillates to the first minimum value. The optimal ranges of foam parameters to mitigate laser imprint are proposed with the aid of dimensional analysis: the foam thickness is about 2~3 times the perturbation wavelength, and the foam density is about 1/2~3/2 times the mass density corresponding to the critical density

    Entanglement crossover close to a quantum critical point

    Full text link
    We discuss the thermal entanglement close to a quantum phase transition by analyzing the concurrence for one dimensional models in the quantum Ising universality class. We demonstrate that the entanglement sensitivity to thermal and to quantum fluctuations obeys universal T≠0T\neq 0--scaling behaviour. We show that the entanglement, together with its criticality, exhibits a peculiar universal crossover behaviour.Comment: 12 pages; 5 figures (eps). References added; to be published in Europhysics Letter

    Coexistence of coupled magnetic phases in epitaxial TbMnO3 films revealed by ultrafast optical spectroscopy

    Full text link
    Ultrafast optical pump-probe spectroscopy is used to reveal the coexistence of coupled antiferromagnetic/ferroelectric and ferromagnetic orders in multiferroic TbMnO3 films through their time domain signatures. Our observations are explained by a theoretical model describing the coupling between reservoirs with different magnetic properties. These results can guide researchers in creating new kinds of multiferroic materials that combine coupled ferromagnetic, antiferromagnetic and ferroelectric properties in one compound.Comment: Accepted by Appl. Phys. let
    • …
    corecore