7,549 research outputs found
Throughput capacity of two-hop relay MANETs under finite buffers
Since the seminal work of Grossglauser and Tse [1], the two-hop relay
algorithm and its variants have been attractive for mobile ad hoc networks
(MANETs) due to their simplicity and efficiency. However, most literature
assumed an infinite buffer size for each node, which is obviously not
applicable to a realistic MANET. In this paper, we focus on the exact
throughput capacity study of two-hop relay MANETs under the practical finite
relay buffer scenario. The arrival process and departure process of the relay
queue are fully characterized, and an ergodic Markov chain-based framework is
also provided. With this framework, we obtain the limiting distribution of the
relay queue and derive the throughput capacity under any relay buffer size.
Extensive simulation results are provided to validate our theoretical framework
and explore the relationship among the throughput capacity, the relay buffer
size and the number of nodes
Recommended from our members
Employing a Narrow-Band-Gap Mediator in Ternary Solar Cells for Enhanced Photovoltaic Performance.
Ternary organic solar cells (OSCs) provide a convenient and effective means to further improve the power conversion efficiency (PCE) of binary ones via composition control. However, the role of the third component remains to be explored in specific binary systems. Herein, we report ternary blend solar cells by adding the narrow-band-gap donor PCE10 as the mediator into the PBDB-T:IDTT-T binary blend system. The extended absorption, efficient fluorescence resonance energy transfer, enhanced charge dissociation, and induced tighter molecular packing of the ternary blend films enhance the photovoltaic properties of devices and deliver a champion PCE of 10.73% with an impressively high open-circuit voltage (VOC) of 1.03 V. Good miscibility and similar molecular packing behavior of the components guarantee the desired morphology in the ternary blend films, leading to solar cell devices with over 10% PCEs at a range of compositions. Our results suggest that ternary systems with properly aligned energy levels and overlapping absorption among the components hold great promises to further enhance the performance of corresponding binary ones
- …