26,397 research outputs found
Assessing effects of permafrost thaw on C fluxes based on multiyear modeling across a permafrost thaw gradient at Stordalen, Sweden
Northern peatlands in permafrost regions contain a large amount of organic carbon (C) in the soil. Climate warming and associated permafrost degradation are expected to have significant impacts on the C balance of these ecosystems, but the magnitude is uncertain. We incorporated a permafrost model, Northern Ecosystem Soil Temperature (NEST), into a biogeochemical model, DeNitrificationDeComposition (DNDC), to model C dynamics in highlatitude peatland ecosystems. The enhanced model was applied to assess effects of permafrost thaw on C fluxes of a subarctic peatland at Stordalen, Sweden. DNDC simulated soil freeze–thaw dynamics, net ecosystem exchange of CO2 (NEE), and CH4 fluxes across three typical land cover types, which represent a gradient in the process of ongoing permafrost thaw at Stordalen. Model results were compared with multiyear field measurements, and the validation indicates that DNDC was able to simulate observed differences in seasonal soil thaw, NEE, and CH4 fluxes across the three land cover types. Consistent with the results from field studies, the modeled C fluxes across the permafrost thaw gradient demonstrate that permafrost thaw and the associated changes in soil hydrology and vegetation not only increase net uptake of C from the atmosphere but also increase the annual to decadal radiative forcing impacts on climate due to increased CH4 emissions. This study indicates the potential of utilizing biogeochemical models, such as DNDC, to predict the soil thermal regime in permafrost areas and to investigate impacts of permafrost thaw on ecosystem C fluxes after incorporating a permafrost component into the model framework
Doping Evolution of Oxygen K-edge X-ray Absorption Spectra in Cuprate Superconductors
We study oxygen K-edge x-ray absorption spectroscopy (XAS) and investigate
the validity of the Zhang-Rice singlet (ZRS) picture in overdoped cuprate
superconductors. Using large-scale exact diagonalization of the three-orbital
Hubbard model, we observe the effect of strong correlations manifesting in a
dynamical spectral weight transfer from the upper Hubbard band to the ZRS band.
The quantitative agreement between theory and experiment highlights an
additional spectral weight reshuffling due to core-hole interaction. Our
results confirm the important correlated nature of the cuprates and elucidate
the changing orbital character of the low-energy quasi-particles, but also
demonstrate the continued relevance of the ZRS even in the overdoped region.Comment: Original: 5 pages, 4 figures. Replaced: 6 pages and 4 figures, with
updated title and conten
Piezoelectric control of the magnetic anisotropy via interface strain coupling in a composite multiferroic structure
We investigate theoretically the magnetic dynamics in a
ferroelectric/ferromagnetic heterostructure coupled via strain-mediated
magnetoelectric interaction. We predict an electric field-induced magnetic
switching in the plane perpendicular to the magneto-crystalline easy axis, and
trace this effect back to the piezoelectric control of the magnetoelastic
coupling. We also investigate the magnetic remanence and the electric
coercivity
- …