68 research outputs found

    External modulation method for generating accurate linear optical FMCW

    Get PDF
    Frequency modulation continuous wave (FMCW) lasers are key components in modern optical imaging. However, current intracavity modulation lasers do not exhibit low-frequency jitter rate and high linearity due to the inherent relaxation oscillations. Although this may be compensated in a direct modulation laser diode using an optoelectronic feedback loop, the available sweep speed is moderately small. In this letter, a special external modulation method is developed to improve the performance of FMCW. Since only the first sideband optical field is used during the entire generation process, phase noise is kept to a minimum and is also independent of the sweep speed. We demonstrate that the linearity and jitter rates do not deteriorate appreciably when the sweep speed is changed over three orders of magnitude, even up to the highest sweep speed of 2.5 GHz/ μs

    Efficient Thermal Conductance in Organometallic Perovskite CH3NH3PbI3 Films

    Full text link
    Perovskite-based optoelectronic devices have shown great promise for solar conversion and other optoelectronic applications, but their long-term performance instability is regarded as a major obstacle to their widespread deployment. Previous works have shown that the ultralow thermal conductivity and inefficient heat spreading might put an intrinsic limit on the lifetime of perovskite devices. Here, we report the observation of a remarkably efficient thermal conductance, with conductivity of 11.2 +/- 0.8 W m^-1 K^-1 at room temperature, in densely-packed perovskite CH3NH3PbI3 films, via noncontact time-domain thermal reflectance measurements. The temperature-dependent experiments suggest the important roles of organic cations and structural phase transitions, which are further confirmed by temperature-dependent Raman spectra. The thermal conductivity at room temperature observed here is over one order of magnitude larger than that in the early report, suggesting that perovskite device performance will not be limited by thermal stability

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    Evaluation of Vegetation Restoration along an Expressway in a Cold, Arid, and Desertified Area of China

    No full text
    Vegetation restoration plays a significant role in the restoration of expressways in the arid zone of China, but we still do not know which soil and vegetation types are most effective. We investigated soil particle size (SPZ), volume weight of the soil (VWS), soil water content (SWC), total porosity of soil (TP), soil organic matter (SOM), water erosion (WrE), and wind erosion (WdE) of eight sites (S1–S8) and evaluated them using the gray correlation method (GCM). Based on our results, the average SWC of the treatments ranged from 9.6% to 18.8%, following the order S4 > S5 > S8 > S6 > S3 > S7 > S1 > S2. The average SPZ of soils in S1, S2, S4, S5, S6, and S8 was larger, ranging from 0.23 to 0.68 mm, while that of soils in S3 and S7 was smaller, ranging from 0.01 to 0.09 mm. The TP in different treatment areas ranged from 50% to 60%, which is not conducive to soil and water conservation. The SOM levels varied widely among the different soils and were always below the threshold levels established by the second National Soil Census, rendering the soils not suitable for plant growth. The WrE (36–80 t/ha) was greater than the WdE (7–24 t/ha). In general, to achieve high soil and water conservation outcomes in this area, S1 and S7 offered the best protection benefits in terms of soil and water conservation

    Optimization of <i>Eucommia Ulmoides</i> Leaves Vinegar Process to Improve the Antioxidant Activity

    No full text

    Evaluation of Vegetation Restoration along an Expressway in a Cold, Arid, and Desertified Area of China

    No full text
    Vegetation restoration plays a significant role in the restoration of expressways in the arid zone of China, but we still do not know which soil and vegetation types are most effective. We investigated soil particle size (SPZ), volume weight of the soil (VWS), soil water content (SWC), total porosity of soil (TP), soil organic matter (SOM), water erosion (WrE), and wind erosion (WdE) of eight sites (S1–S8) and evaluated them using the gray correlation method (GCM). Based on our results, the average SWC of the treatments ranged from 9.6% to 18.8%, following the order S4 &gt; S5 &gt; S8 &gt; S6 &gt; S3 &gt; S7 &gt; S1 &gt; S2. The average SPZ of soils in S1, S2, S4, S5, S6, and S8 was larger, ranging from 0.23 to 0.68 mm, while that of soils in S3 and S7 was smaller, ranging from 0.01 to 0.09 mm. The TP in different treatment areas ranged from 50% to 60%, which is not conducive to soil and water conservation. The SOM levels varied widely among the different soils and were always below the threshold levels established by the second National Soil Census, rendering the soils not suitable for plant growth. The WrE (36–80 t/ha) was greater than the WdE (7–24 t/ha). In general, to achieve high soil and water conservation outcomes in this area, S1 and S7 offered the best protection benefits in terms of soil and water conservation

    Changes in Annual, Seasonal and Monthly Climate and Its Impacts on Runoff in the Hutuo River Basin, China

    No full text
    Much attention has focused on the effects of precipitation (P) and temperature (T) changes on runoff (R); however, the impacts of other climatic factors need to be studied further. Moreover, the monthly and seasonal scale also need to be investigated. In this paper, we investigated the characteristics of changes in annual, seasonal, and monthly hydroclimatic variables, including R, P, T, sunshine duration (SD), relative humidity (RH), and wind speed (WS), between 1956 and 2015 in the Hutuo River basin (HTRB) using the nonparametric Mann-Kendall test, the cumulative anomaly test and the Precipitation-Runoff double cumulative curve method. Additionally, we assessed the contributions of climatic factors to changes in R in the HTRB between 1956 and 2015 using the climate elasticity method. The results indicated that significant downward trends were found for both annual and seasonal R, SD, RH, and WS. In contrast, there was a nonsignificant decrease in annual P; specifically, P significantly increased in spring and winter, but P insignificantly decreased in summer and autumn. Annual and seasonal T increased significantly. The annual R showed an abrupt change in 1979; thus, the entire study period from 1956 to 2015 was divided into two periods: the baseline period (i.e., 1956–1978) and the change period (i.e., 1979–2015). The elasticities in the climatic factors were calculated using the climate elasticity method, and the elasticity values of P, T, SD, RH, and WS were 1.84, −1.07, −2.79, 1.73, and −0.45, respectively. Increasing T was the main cause of the decline in R, and decreasing SD had a large negative contribution to the decline in R in the HTRB. This study will help researchers understand the interactions between climate change and hydrological processes at the basin scale and promote water resource management and watershed planning

    Amplification and spontaneous emission of Er-doped fiber both in theory and experiment

    No full text
    We took a step forward on the basis of existing deduction, the formula of net gain coefficient of amplification of spontaneous emission of Er-doped fiber was given. Based on the data, which were provided by the reference, we calculated the net gain coefficients for different fiber length pumped at different pump power. Then theoretical curves were drawn. ASE spectra obtained experimentally were in excellent qualitative agreement with the ones obtained from theory. At last, the calculated optimal fiber lengths were given according to several common used wavelengths at the same pump power

    A Novel Method of Measuring Instantaneous Frequency of an Ultrafast Frequency Modulated Continuous-Wave Laser

    No full text
    Ultrafast linear frequency modulated continuous-wave (FMCW) lasers are a special category of CW lasers. The linear FMCW laser is the light source for many sensing applications, especially for light detection and ranging (LiDAR). However, systems for the generation of high quality linear FMCW light are limited and diverse in terms of technical approaches and mechanisms. Due to a lack of characterization methods for linear FMCW lasers, it is difficult to compare and judge the generation systems in the same category. We propose a novel scheme for measuring the mapping relationship between instantaneous frequency and time of a FMCW laser based on a modified coherent optical spectrum analyzer (COSA) and digital signal processing (DSP) method. Our method has the potential to measure the instantaneous frequency of a FMCW laser at an unlimited sweep rate. In this paper, we demonstrate how to use this new method to precisely measure a FMCW laser at a large fast sweep rate of 5000 THz/s by both simulation and experiments. We find experimentally that the uncertainty of this method is less than 100 kHz and can be improved further if a frequency feedback servo system is introduced to stabilize the local CW laser
    corecore