49 research outputs found

    Efficient Residual Dense Block Search for Image Super-Resolution

    Full text link
    Although remarkable progress has been made on single image super-resolution due to the revival of deep convolutional neural networks, deep learning methods are confronted with the challenges of computation and memory consumption in practice, especially for mobile devices. Focusing on this issue, we propose an efficient residual dense block search algorithm with multiple objectives to hunt for fast, lightweight and accurate networks for image super-resolution. Firstly, to accelerate super-resolution network, we exploit the variation of feature scale adequately with the proposed efficient residual dense blocks. In the proposed evolutionary algorithm, the locations of pooling and upsampling operator are searched automatically. Secondly, network architecture is evolved with the guidance of block credits to acquire accurate super-resolution network. The block credit reflects the effect of current block and is earned during model evaluation process. It guides the evolution by weighing the sampling probability of mutation to favor admirable blocks. Extensive experimental results demonstrate the effectiveness of the proposed searching method and the found efficient super-resolution models achieve better performance than the state-of-the-art methods with limited number of parameters and FLOPs

    Efficient Vision Transformers via Fine-Grained Manifold Distillation

    Full text link
    This paper studies the model compression problem of vision transformers. Benefit from the self-attention module, transformer architectures have shown extraordinary performance on many computer vision tasks. Although the network performance is boosted, transformers are often required more computational resources including memory usage and the inference complexity. Compared with the existing knowledge distillation approaches, we propose to excavate useful information from the teacher transformer through the relationship between images and the divided patches. We then explore an efficient fine-grained manifold distillation approach that simultaneously calculates cross-images, cross-patch, and random-selected manifolds in teacher and student models. Experimental results conducted on several benchmarks demonstrate the superiority of the proposed algorithm for distilling portable transformer models with higher performance. For example, our approach achieves 75.06% Top-1 accuracy on the ImageNet-1k dataset for training a DeiT-Tiny model, which outperforms other ViT distillation methods

    Serum Helicobacter pylori NapA antibody as a potential biomarker for gastric cancer

    Get PDF
    Helicobacter pylori (H. pylori) infection is strongly associated with gastric cancer. However, only a minority of infected individuals ever develop gastric cancer. This risk stratification may be in part due to differences among strains. The relationship between neutrophil-activating protein (NapA) and gastric cancer is unclear. The purpose of this study is to evaluate the significance of NapA as a biomarker in gastric cancer. We used enzyme linked immunosorbent assay (ELISA) to determine the status of H. pylori infection. Indirect ELISA method was used for detection of NapA antibody titer in the serum of H. pyloriinfected individuals. Unconditional logistic regressions were adopted to analyze the variables and determine the association of NapA and gastric cancer. The results of study indicated serum H. pylori NapA antibody level were associated with a reduced risk for development of gastric cancer. It may be used in conjugation with other indicators for gastric cancer detection

    Percutaneous ballon compression for recurrent TN —a retrospective study of 33 cases

    Get PDF
    ObjectiveTo investigate the clinical efficacy of percutaneous microballoon compression in the treatment of recurrent TN.MethodsThis retrospective study included 33 patients who underwent percutaneous microballoon compression for the treatment of recurrent TN from March 2019 to May 2022. Postoperative pain recurrence and facial numbness were assessed according to the Barrow Neurological Institute (BNI) pain score. Patients’ anxiety and sleep status during follow-up were assessed according to the Self-rating Anxiety Scale (SAS) and Pittsburgh Sleep Quality Index (PSQI).ResultsAll patients (33 cases) were followed up for 12–38 months, with an average follow-up time of 23 months. On postoperative day 1, 31 patients (93.9%) reported no pain, and 2 patients were given drug treatment for pain relief, The total efficacy was 93.9%. Moreover, 2 patients (6.1%) reported significant pain relief 2 weeks postoperatively. There are many complications during and after PBC. The incidence of the trigeminocardiac reflex (TCR) during surgery was 100%, and the incidence of facial numbness, masseter muscle weakness, labial herpes and headache was 97, 60.6, 12.1 and 3%. No patient experienced severe facial numbness, hearing impairment, diplopia, injury to cranial nerves, Meningitis, intracranial haemorrhage or keratitis. 1 patient had recurrence of pain at 6 months post-op, which was relieved by oral medication. 81.8% suffered from anxiety and 54.5% had poor sleep quality before surgery. After the period of PBC, SAS and PSQI scores decreased continuously. There were significant improvements in anxiety and sleep status postoperatively compared with preoperatively.ConclusionPBC is a safe and effective option for the treatment of recurrent TN. The arduous and demanding nature of the clinical course subjects the patient to severe pain, mental, and physical stress. Thankfully, it significantly improves the symptoms of anxiety, depression, and sleep quality

    Cardiac Shock Wave Therapy Attenuates Cardiomyocyte Apoptosis after Acute Myocardial Infarction in Rats

    Get PDF
    Background/Aims: Researches have showed that cardiac shock wave therapy (CSWT) could improve left ventricular function and attenuate LV remodeling of the ischemic heart. Apoptosis plays an important role in myocardial infarction and determines heart function and prognosis. However, it is still not clear whether CSWT is sufficient to attenuate acute myocardial infarction (AMI) induced cardiomyocyte apoptosis in vivo. In this study, we used a rat model to examine whether CSWT could attenuate cardiomyocyte apoptosis after AMI and to explore potential mechanisms. Methods: We generated an AMI rat model to investigate the function and possible regulatory mechanisms of CSWT. All rats were randomly divided into four groups: the sham-operated only group, sham-operated with SW treatment group, AMI only group, and AMI treated with SW treatment group.The rats were treated with a left anterior descending coronary artery ligation for 12h and then treated with or without CSWT (800 shots at 0.1 mJ/ mm2). Cytochrome c release was measured to analyze mitochondrial function and integrity. The apoptotic cell rate was determined by TUNEL assay. Western blot was used to analyze the cell apoptosis-, inflammation-, and survival-related signaling pathways. Results: First, the methodology of CSWT in the rat model of AMI was established. Second, CSWT attenuated the cardiomyocyte apoptosis rate in the infarct border zone. Third, CSWT suppressed the expression of apoptosis and inflammation molecules after AMI. Fourth, CSWT inhibited activation of the JNK pathway, which indicated inhibition of the cell inflammatory pathways and promotion of cardiomyocyte survival after AMI. Conclusion: These results indicate that CSWT exerts a protective effect against AMI-induced cardiomyocyte apoptosis, potentially by attenuating cytochrome c release from the mitochondria and inhibiting of the mitochondrial-dependent intrinsic apoptotic pathway. We also demonstrate that CSWT suppresses the JNK pathway and cardiomyocyte inflammation, which may also decrease cardiomyocyte apoptosis in vivo

    Relationship between HLA genetic variations, COVID-19 vaccine antibody response, and risk of breakthrough outcomes

    Get PDF
    The rapid global distribution of COVID-19 vaccines, with over a billion doses administered, has been unprecedented. However, in comparison to most identified clinical determinants, the implications of individual genetic factors on antibody responses post-COVID-19 vaccination for breakthrough outcomes remain elusive. Here, we conducted a population-based study including 357,806 vaccinated participants with high-resolution HLA genotyping data, and a subset of 175,000 with antibody serology test results. We confirmed prior findings that single nucleotide polymorphisms associated with antibody response are predominantly located in the Major Histocompatibility Complex region, with the expansive HLA-DQB1*06 gene alleles linked to improved antibody responses. However, our results did not support the claim that this mutation alone can significantly reduce COVID-19 risk in the general population. In addition, we discovered and validated six HLA alleles (A*03:01, C*16:01, DQA1*01:02, DQA1*01:01, DRB3*01:01, and DPB1*10:01) that independently influence antibody responses and demonstrated a combined effect across HLA genes on the risk of breakthrough COVID-19 outcomes. Lastly, we estimated that COVID-19 vaccine-induced antibody positivity provides approximately 20% protection against infection and 50% protection against severity. These findings have immediate implications for functional studies on HLA molecules and can inform future personalised vaccination strategies

    Relationship between HLA genetic variations, COVID-19 vaccine antibody response, and risk of breakthrough outcomes

    Get PDF
    The rapid global distribution of COVID-19 vaccines, with over a billion doses administered, has been unprecedented. However, in comparison to most identified clinical determinants, the implications of individual genetic factors on antibody responses post-COVID-19 vaccination for breakthrough outcomes remain elusive. Here, we conducted a population-based study including 357,806 vaccinated participants with high-resolution HLA genotyping data, and a subset of 175,000 with antibody serology test results. We confirmed prior findings that single nucleotide polymorphisms associated with antibody response are predominantly located in the Major Histocompatibility Complex region, with the expansive HLA-DQB1*06 gene alleles linked to improved antibody responses. However, our results did not support the claim that this mutation alone can significantly reduce COVID-19 risk in the general population. In addition, we discovered and validated six HLA alleles (A*03:01, C*16:01, DQA1*01:02, DQA1*01:01, DRB3*01:01, and DPB1*10:01) that independently influence antibody responses and demonstrated a combined effect across HLA genes on the risk of breakthrough COVID-19 outcomes. Lastly, we estimated that COVID-19 vaccine-induced antibody positivity provides approximately 20% protection against infection and 50% protection against severity. These findings have immediate implications for functional studies on HLA molecules and can inform future personalised vaccination strategies.</p

    Relationship between HLA genetic variations, COVID-19 vaccine antibody response, and risk of breakthrough outcomes

    Get PDF
    The rapid global distribution of COVID-19 vaccines, with over a billion doses administered, has been unprecedented. However, in comparison to most identified clinical determinants, the implications of individual genetic factors on antibody responses post-COVID-19 vaccination for breakthrough outcomes remain elusive. Here, we conducted a population-based study including 357,806 vaccinated participants with high-resolution HLA genotyping data, and a subset of 175,000 with antibody serology test results. We confirmed prior findings that single nucleotide polymorphisms associated with antibody response are predominantly located in the Major Histocompatibility Complex region, with the expansive HLA-DQB1*06 gene alleles linked to improved antibody responses. However, our results did not support the claim that this mutation alone can significantly reduce COVID-19 risk in the general population. In addition, we discovered and validated six HLA alleles (A*03:01, C*16:01, DQA1*01:02, DQA1*01:01, DRB3*01:01, and DPB1*10:01) that independently influence antibody responses and demonstrated a combined effect across HLA genes on the risk of breakthrough COVID-19 outcomes. Lastly, we estimated that COVID-19 vaccine-induced antibody positivity provides approximately 20% protection against infection and 50% protection against severity. These findings have immediate implications for functional studies on HLA molecules and can inform future personalised vaccination strategies.</p
    corecore