27 research outputs found

    A new fault diagnosis method using deep belief network and compressive sensing

    Get PDF
    Compressive sensing provides a new idea for machinery monitoring, which greatly reduces the burden on data transmission. After that, the compressed signal will be used for fault diagnosis by feature extraction and fault classification. However, traditional fault diagnosis heavily depends on the prior knowledge and requires a signal reconstruction which will cost great time consumption. For this problem, a deep belief network (DBN) is used here for fault detection directly on compressed signal. This is the first time DBN is combined with the compressive sensing. The PCA analysis shows that DBN has successfully separated different features. The DBN method which is tested on compressed gearbox signal, achieves 92.5 % accuracy for 25 % compressed signal. We compare the DBN on both compressed and reconstructed signal, and find that the DBN using compressed signal not only achieves better accuracies, but also costs less time when compression ratio is less than 0.35. Moreover, the results have been compared with other classification methods

    A new fault diagnosis method using deep belief network and compressive sensing

    Get PDF
    Compressive sensing provides a new idea for machinery monitoring, which greatly reduces the burden on data transmission. After that, the compressed signal will be used for fault diagnosis by feature extraction and fault classification. However, traditional fault diagnosis heavily depends on the prior knowledge and requires a signal reconstruction which will cost great time consumption. For this problem, a deep belief network (DBN) is used here for fault detection directly on compressed signal. This is the first time DBN is combined with the compressive sensing. The PCA analysis shows that DBN has successfully separated different features. The DBN method which is tested on compressed gearbox signal, achieves 92.5 % accuracy for 25 % compressed signal. We compare the DBN on both compressed and reconstructed signal, and find that the DBN using compressed signal not only achieves better accuracies, but also costs less time when compression ratio is less than 0.35. Moreover, the results have been compared with other classification methods

    Compression Reconstruction and Fault Diagnosis of Diesel Engine Vibration Signal Based on Optimizing Block Sparse Bayesian Learning

    No full text
    It is critical to deploy wireless data transmission technologies remotely, in real-time, to monitor the health state of diesel engines dynamically. The usual approach to data compression is to collect data first, then compress it; however, we cannot ensure the correctness and efficiency of the data. Based on sparse Bayesian optimization block learning, this research provides a method for compression reconstruction and fault diagnostics of diesel engine vibration data. This method’s essential contribution is combining compressive sensing technology with fault diagnosis. To achieve a better diagnosis effect, we can effectively improve the wireless transmission efficiency of the vibration signal. First, the dictionary is dynamically updated by learning the dictionary using singular value decomposition to produce the ideal sparse form. Second, a block sparse Bayesian learning boundary optimization approach is utilized to recover structured non-sparse signals rapidly. A detailed assessment index of the data compression effect is created. Finally, the experimental findings reveal that the approach provided in this study outperforms standard compression methods in terms of compression efficiency and accuracy and its ability to produce the desired fault diagnostic effect, proving the usefulness of the proposed method

    Research on Fault Feature Extraction Method of Rolling Bearing Based on SSA–VMD–MCKD

    No full text
    In response to the problem that nonlinear and non-stationary rolling bearing fault signals are easily disturbed by noise, which leads to the difficulty of fault feature extraction, to take full advantage of the superiority of variational mode decomposition (VMD) in noise reduction, and of maximum correlation kurtosis deconvolution (MCKD) in highlighting continuous pulses masked by noise, a method based on sparrow search algorithm (SSA), VMD, and MCKD is proposed, namely, SSA–VM–MCKD, for rolling bearing faint fault extraction. To improve the feature extraction effect, the method uses the inverse of the peak factor squared of the envelope spectrum as the fitness function, and the parameters to be determined in both algorithms are searched adaptively by SSA. Firstly, the parameter-optimized VMD is used to decompose the fault signal to obtain the intrinsic mode function (IMF) components, from which the optimal mode component is selected, and then the optimal component signal is deconvoluted by the parameter-optimized MCKD to enhance the periodic fault pulses in the optimal component signal, and finally extracts the rolling bearing fault characteristic frequency by envelope demodulation. Experiments on simulated signals and measured data show that the method can adaptively determine the parameters in VMD and MCKD, enhance the fault impact components in the signals, and effectively extract the fault characteristic frequencies of rolling bearings, with a success rate up to 100%, providing a new idea for rolling bearing fault feature extraction

    Research on Fault Feature Extraction Method of Rolling Bearing Based on SSA–VMD–MCKD

    No full text
    In response to the problem that nonlinear and non-stationary rolling bearing fault signals are easily disturbed by noise, which leads to the difficulty of fault feature extraction, to take full advantage of the superiority of variational mode decomposition (VMD) in noise reduction, and of maximum correlation kurtosis deconvolution (MCKD) in highlighting continuous pulses masked by noise, a method based on sparrow search algorithm (SSA), VMD, and MCKD is proposed, namely, SSA–VM–MCKD, for rolling bearing faint fault extraction. To improve the feature extraction effect, the method uses the inverse of the peak factor squared of the envelope spectrum as the fitness function, and the parameters to be determined in both algorithms are searched adaptively by SSA. Firstly, the parameter-optimized VMD is used to decompose the fault signal to obtain the intrinsic mode function (IMF) components, from which the optimal mode component is selected, and then the optimal component signal is deconvoluted by the parameter-optimized MCKD to enhance the periodic fault pulses in the optimal component signal, and finally extracts the rolling bearing fault characteristic frequency by envelope demodulation. Experiments on simulated signals and measured data show that the method can adaptively determine the parameters in VMD and MCKD, enhance the fault impact components in the signals, and effectively extract the fault characteristic frequencies of rolling bearings, with a success rate up to 100%, providing a new idea for rolling bearing fault feature extraction

    Fault Diagnosis Method of Planetary Gearbox Based on Compressed Sensing and Transfer Learning

    No full text
    This paper suggests a novel method for diagnosing planetary gearbox faults. It addresses the issue of network bandwidth limitation during wireless data transmission and the problem of relying on expert experience and insufficient training samples in traditional fault diagnosis. The continuous wavelet transform was combined with the AlexNet convolutional neural network using transfer learning and the compressed theory of sense. The original vibration signal was compressed and reconstructed using the compressed sampling orthogonal matching pursuit reconstruction algorithm. A continuous wavelet transform was used to convert the compressed signal into a time–frequency image. The pretrained AlexNet model was selected as the migration object, the network model was fine-tuned and retrained, and the trained AlexNet model was used to diagnose the fault using the model-based migration method. It was demonstrated by the experimental results when the compression ratio CR = 0.5. Compared to other network models, the classification accuracy rate is 97.78%. This method has specific reference value and application prospects and good feature extraction and fault classification capabilities

    Combination of Optimized Variational Mode Decomposition and Deep Transfer Learning: A Better Fault Diagnosis Approach for Diesel Engines

    No full text
    Extracting features manually and employing preeminent knowledge is overly utilized in methods to conduct fault diagnosis. A diagnosis approach utilizing intelligent methods of the optimized variational mode decomposition and deep transfer learning is proposed in this manuscript to deal with fault diagnosis. Firstly, the variational mode decomposition is optimized by K values of the dispersion entropy to realize an adaptive decomposition and reduce the noise of the signal. Secondly, an image with two dimensions is generated by a vibration signal with one dimension utilizing a short-time Fourier transform, after conducting noise reduction. Then, the ResNet18 network model is used to pre-train the model. Finally, the model transfer method is used to detect faults of a diesel engine. The results show that the proposed method outperforms the deep learning methods available in the literature. Besides, better noise reduction ability and higher diagnostic accuracy are attained

    Combination of Optimized Variational Mode Decomposition and Deep Transfer Learning: A Better Fault Diagnosis Approach for Diesel Engines

    No full text
    Extracting features manually and employing preeminent knowledge is overly utilized in methods to conduct fault diagnosis. A diagnosis approach utilizing intelligent methods of the optimized variational mode decomposition and deep transfer learning is proposed in this manuscript to deal with fault diagnosis. Firstly, the variational mode decomposition is optimized by K values of the dispersion entropy to realize an adaptive decomposition and reduce the noise of the signal. Secondly, an image with two dimensions is generated by a vibration signal with one dimension utilizing a short-time Fourier transform, after conducting noise reduction. Then, the ResNet18 network model is used to pre-train the model. Finally, the model transfer method is used to detect faults of a diesel engine. The results show that the proposed method outperforms the deep learning methods available in the literature. Besides, better noise reduction ability and higher diagnostic accuracy are attained

    Fault Diagnosis Method of Planetary Gearbox Based on Compressed Sensing and Transfer Learning

    No full text
    This paper suggests a novel method for diagnosing planetary gearbox faults. It addresses the issue of network bandwidth limitation during wireless data transmission and the problem of relying on expert experience and insufficient training samples in traditional fault diagnosis. The continuous wavelet transform was combined with the AlexNet convolutional neural network using transfer learning and the compressed theory of sense. The original vibration signal was compressed and reconstructed using the compressed sampling orthogonal matching pursuit reconstruction algorithm. A continuous wavelet transform was used to convert the compressed signal into a time–frequency image. The pretrained AlexNet model was selected as the migration object, the network model was fine-tuned and retrained, and the trained AlexNet model was used to diagnose the fault using the model-based migration method. It was demonstrated by the experimental results when the compression ratio CR = 0.5. Compared to other network models, the classification accuracy rate is 97.78%. This method has specific reference value and application prospects and good feature extraction and fault classification capabilities

    Microgrid tie-line power fluctuation mitigation with virtual energy storage

    No full text
    There is a large amount of controllable loads in the microgrid. They can be described as virtual energy storage to participate in microgrid tie-line power fluctuation mitigation. Firstly, in order to meet the grid-connected requirement, the wavelet packet decomposition algorithm is used to smooth the tie-line power fluctuation. Furthermore, in order to prevent overcharge and overdischarge of battery or virtual energy storage, the power allocation between two types of energy storage is implemented equally based on the concept of energy. In addition, the fuzzy control strategy is applied to revise virtual energy storage power based on its SOC (i.e. state-of-charge), so that virtual energy storage can operate within a reasonable work range. Finally, an example is given to verify the effectiveness of the control strategy
    corecore