392 research outputs found

    Column-Spatial Correction Network for Remote Sensing Image Destriping

    Get PDF
    The stripe noise in the multispectral remote sensing images, possibly resulting from the instrument instability, slit contamination, and light interference, significantly degrades the imaging quality and impairs high-level visual tasks. The local consistency of homogeneous region in striped images is damaged because of the different gains and offsets of adjacent sensors regarding the same ground object, which leads to the structural characteristics of stripe noise. This can be characterized by the increased differences between columns in the remote sensing image. Therefore, the destriping can be viewed as a process of improving the local consistency of homogeneous region and the global uniformity of whole image. In recent years, convolutional neural network (CNN)-based models have been introduced to destriping tasks, and have achieved advanced results, relying on their powerful representation ability. Therefore, to effectively leverage both CNNs and the structural characteristics of stripe noise, we propose a multi-scaled column-spatial correction network (CSCNet) for remote sensing image destriping, in which the local structural characteristic of stripe noise and the global contextual information of the image are both explored at multiple feature scales. More specifically, the column-based correction module (CCM) and spatial-based correction module (SCM) were designed to improve the local consistency and global uniformity from the perspectives of column correction and full image correction, respectively. Moreover, a feature fusion module based on the channel attention mechanism was created to obtain discriminative features derived from different modules and scales. We compared the proposed model against both traditional and deep learning methods on simulated and real remote sensing images. The promising results indicate that CSCNet effectively removes image stripes and outperforms state-of-the-art methods in terms of qualitative and quantitative assessments

    Analysis of Load-Carrying Capacity for Redundant Free-Floating Space Manipulators in Trajectory Tracking Task

    Get PDF
    The aim of this paper is to analyze load-carrying capacity of redundant free-floating space manipulators (FFSM) in trajectory tracking task. Combined with the analysis of influential factors in load-carrying process, evaluation of maximum load-carrying capacity (MLCC) is described as multiconstrained nonlinear programming problem. An efficient algorithm based on repeated line search within discontinuous feasible region is presented to determine MLCC for a given trajectory of the end-effector and corresponding joint path. Then, considering the influence of MLCC caused by different initial configurations for the starting point of given trajectory, a kind of maximum payload initial configuration planning method is proposed by using PSO algorithm. Simulations are performed for a particular trajectory tracking task of the 7-DOF space manipulator, of which MLCC is evaluated quantitatively. By in-depth research of the simulation results, significant gap between the values of MLCC when using different initial configurations is analyzed, and the discontinuity of allowable load-carrying capacity is illustrated. The proposed analytical method can be taken as theoretical foundation of feasibility analysis, trajectory optimization, and optimal control of trajectory tracking task in on-orbit load-carrying operations

    Renovation of EdgeCloudSim: An Efficient Discrete-Event Approach

    Get PDF
    Due to the growing popularity of the Internet of Things, edge computing concept has been widely studied to relieve the load on the original cloud and networks while improving the service quality for end-users. To simulate such a complex environment involving edge and cloud computing, EdgeCloudSim has been widely adopted. However, it suffers from certain efficiency and scalability issues due to the ignorance of the deficiency in the originally adopted data structures and maintenance strategies. Specifically, it generates all events at beginning of the simulation and stores unnecessary historical information, both result in unnecessarily high complexity for search operations. In this work, by fixing the mismatches on the concept of discrete-event simulation, we propose enhancement of EdgeCloudSim which improves not only the runtime efficiency of simulation, but also the flexibility and scalability. Through extensive experiments with statistical methods, we show that the enhancement does not affect the expressiveness of simulations while obtaining 2 orders of magnitude speedup, especially when the device count is large

    Status of the singlino-dominated dark matter in general Next-to-Minimal Supersymmetric Standard Model

    Full text link
    With the rapid progress of dark matter direct detection experiments, the attractiveness of the popular bino-dominated dark matter in economical supersymmetric theories is fading. As an alternative, the singlino-dominated dark matter in general Next-to-Minimal Supersymmetric Standard Model (NMSSM) is paying due attention. This scenario has the following distinct characteristics: free from the tadpole problem and the domain-wall problem of the NMSSM with a Z3Z_3-symmetry, predicting more stable vacuum states than the Z3Z_3-NMSSM, capable of forming an economical secluded dark matter sector to yield the dark matter experimental results naturally, and readily weaken the restrictions from the LHC search for SUSY. Consequently, it can explain the muon g-2 anomaly in broad parameter space that agrees with various experimental results while simultaneously breaking the electroweak symmetry naturally. In this study, we show in detail how the scenario coincides with the experiments, such as the SUSY search at the LHC, the dark matter search by the LZ experiment, and the improved measurement of the muon g-2. We provide a simple and clear picture of the physics inherent in the general NMSSM

    NGF Inhibits M/KCNQ Currents and Selectively Alters Neuronal Excitability in Subsets of Sympathetic Neurons Depending on their M/KCNQ Current Background

    Get PDF
    M/KCNQ currents play a critical role in the determination of neuronal excitability. Many neurotransmitters and peptides modulate M/KCNQ current and neuronal excitability through their G protein–coupled receptors. Nerve growth factor (NGF) activates its receptor, a member of receptor tyrosine kinase (RTK) superfamily, and crucially modulates neuronal cell survival, proliferation, and differentiation. In this study, we studied the effect of NGF on the neuronal (rat superior cervical ganglion, SCG) M/KCNQ currents and excitability. As reported before, subpopulation SCG neurons with distinct firing properties could be classified into tonic, phasic-1, and phasic-2 neurons. NGF inhibited M/KCNQ currents by similar proportion in all three classes of SCG neurons but increased the excitability only significantly in tonic SCG neurons. The effect of NGF on excitability correlated with a smaller M-current density in tonic neurons. The present study indicates that NGF is an M/KCNQ channel modulator and the characteristic modulation of the neuronal excitability by NGF may have important physiological implications
    • …
    corecore