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Abstract—Due to the growing popularity of the Internet of
Things, edge computing concept has been widely studied to
relieve the load on the original cloud and networks while
improving the service quality for end-users. To simulate such
a complex environment involving edge and cloud computing,
EdgeCloudSim has been widely adopted. However, it suffers
from certain efficiency and scalability issues due to the ignorance
of the deficiency in the originally adopted data structures and
maintenance strategies. Specifically, it generates all events at
beginning of the simulation and stores unnecessary historical
information, both result in unnecessarily high complexity for
search operations. In this work, by fixing the mismatches on the
concept of discrete-event simulation, we propose enhancement of
EdgeCloudSim which improves not only the runtime efficiency
of simulation, but also the flexibility and scalability. Through
extensive experiments with statistical methods, we show that the
enhancement does not affect the expressiveness of simulations
while obtaining 2 orders of magnitude speedup, especially when
the device count is large.

Index Terms—Edge Computing, Cloud Computing, Discrete-
Event Simulation

I. INTRODUCTION

Nowadays edge computing as a new computing paradigm
has attracted more and more attention. With the proliferation
of the Internet of Things (IoT) and the stagnation of network
bandwidth development, the original design of cloud comput-
ing is no longer sufficient [8]. The number of devices in the
network has increased while the devices are acting as not only
data consumers but also producers, e.g., computer vision tasks
are deployed in resource-constrained edges [11].

Specifically, such devices may offer computing and/or net-
work resources as well [9]. It therefore makes sense to process
this data in the geographic vicinity of the devices, rather
than uploading it to the cloud and waiting for the results to
come back. However, in such scenarios the network is often
considerably crowded and the edge devices are also mobile, so
that response time of tasks might not be stable, which might
greatly affect the end-user experience. In addition, limited re-
sources on edge devices, e.g., energy and computational power
are also challenges [13]. In order to study various upcoming
challenges, simulation environments are often preferred, since
deploying a case study in practice is too disruptive [6].

EdgeCloudSim [10] is a widely-adopted simulation envi-
ronment, that is developed to model such edge computing
scenarios including network and computational models. Many
prominent techniques, e.g., [13], [2], and [7], evaluate the
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Fig. 1. Overview of EdgeCloudSim: Blocks with red boarders are enhanced
modules.

performance of their approaches based on this simulation
environment. Similar to iFogSim [5], EdgeCloudSim also
relies on CloudSim [1], which is a discrete-event simulator
that enables modeling and simulation of cloud systems and ap-
plication provisioning environments. However, the additional
modules introduced by EdgeCloudSim in fact confront certain
efficiency and scalability issues. For instance, as proposed
by Law and Kelton [6], the simulated system should only
change its state when an event occurs. However, this is exactly
not a case in EdgeCloudSim. As the locations of simulated
devices at each time point is determined before the start of
simulation, they in fact changes their locations between events
in the simulation. Hence, the searching process over a data
structure has to be triggered at each time the device’s location
is needed, even if the location has not been changed since
the last time. Besides, there are many unnecessary operations
required before and during the simulation that can greatly
degrade the scalability of EdgeCloudSim.

Our Contributions: In this work, we focus on explaining
the potential issues that arise from the current design of
EdgeCloudSim and provide a comprehensive extension to
overcome these issues.
• We discuss two major issues in the original design of

EdgeCloudSim [10], namely the state of the system with
respect to the location of devices changes between the
occurrence of two events, and that all simulated events
are generated beforehand and added into the event queue
offline (see Section II).

• The corresponding enhancement is presented for the
aforementioned two major issues without scarifying the
accuracy of the simulation models, while the other rel-
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evant components in EdgeCloudSim are also refined
accordingly (see Section III).

• We conduct extensive experiments over different config-
urations to show that the enhanced design can obtain in
general two orders-of-magnitude speedup. With two sta-
tistical methods, we argue that the enhancement does not
affect the expressiveness of simulations (see Section IV).
Detailed results and the corresponding scripts are publicly
available on [4].

II. DESIGN IN EDGECLOUDSIM

In this section, we first overview the original design in
EdgeCloudsim, where CloudSim is used to bring the basic
functionalities for the modeling of the cloud systems, and
is responsible for the general execution of the simulation.
In this work, we only enhance some modules introduced by
EdgeCloudSim without changing any design of CloudSim. For
further information of CloudSim, please refer to [1]. Figure 1
illustrates an overview of the modules in EdgeCloudSim,
details are as follows:

• Core Simulation Module is responsible for reading the
configuration files and setting up the simulation accord-
ingly. EdgeCloudSim allows to set the configuration of
the data centers, the properties of the applications, and
other basic settings. In addition, it records the results of
the simulation by using log file.

• Edge Orchestrator Module is applied for managing the
resources of the system in order to improve the perfor-
mance of the system. The Edge Orchestraotr can start
or stop virtual machines and manage the computational
resources of hosts. It also decides the location where to
assign tasks, i.e., on edge servers or cloud servers, by
coordinating these two kinds of servers.

• Networking Module is responsible for determining the
transmission delay of download and upload in wide area
network and wireless local area network. The network
connection quality changes according to the number of
devices in the corresponding sphere, the location of
devices, and the workload. Therefore the transmission
delay between two entities is dynamic.

• Mobility Module is responsible for modeling the mobil-
ity of devices in systems. In a real system, the movement
of a device can cause disconnection, when it is out of
the maximum transmission distance, so influences the
overall performance of the system. In addition, mobility
can cause congestion at the access points.

• Load Generator Module is responsible for generating
the tasks. Each device is in one of the exclusive period,
i.e., the active or inactive period. In the active period
devices generate tasks by following a given distribution.
In the inactive period, devices do not generate tasks.

In the following, we detail the design of two modules specif-
ically, i.e., Mobility Module and Load Generator Module,
which are the main bottleneck of the runtime efficiency.
Afterwards, we clarify the tackled problems in this work.

A. Mobility Module

Mobility in EdgeCloudSim is modeled by the nomadic
mobility model. That is, each access point has a certain attrac-
tiveness. The attractiveness of the access point determines the
duration of a device stays in its sphere of influence. The value
of attractiveness equals to the average duration of a device
stays at this access point. Each device randomly chooses an
access point (location) to stay at, where all locations have the
same probability to be chosen. Then the waiting time for a
device at its location is drawn from the exponential distribu-
tion with the corresponding attractiveness of the location as
the expected value. When the duration runs out, the device
randomly chooses a new location. The above process is used
to determine the location for each mobile device in the system.

In the implementation of EdgeCloudSim, the information
for locations of each device is stored in a list of trees,
that the timestamps of the movement is the index and the
location is the value. Each location gets its own random
exponential distribution generator, that the attractiveness of
that location is the expected value. Then the movements are
calculated for each device. In each movement, as long as the
timestamp of the last movement is smaller than the simulation
duration, a random new location is chosen. Depending on the
attractiveness, the waiting time at this location is generated by
using the corresponding random generator. The tuple of time
and destination of the movement is put into a tree, where the
time is the index and the location is the value.

Aforementioned processes are repeated until the timestamp
of the last movement is greater than the simulation duration.
In the end, each device has a tree that contains the destinations
of the movements and the time when the movement happens.
For each device such a tree is generated and stored in a list
before the start of the simulation. If the location of a device at
a certain time needs to be determined during the simulation,
the corresponding tree has to be searched. The corresponding
value with the largest index that is smaller than the specified
time is the current location of the device.

B. Load Generator Module

The activity of devices in EdgeCloudSim is modeled by an
idle active load model, where each device has a task type
that it can generate, such as health app. When a device is in
an active period, it can generate tasks according to the given
type. The times at which tasks are generated are defined by a
Poisson arrival process. Each task type has a certain expected
value. The time interval in which two tasks of a device
are generated follows a random process by the exponential
distribution with this expected value. The lengths of the active
and inactive periods are fixed and determined by the task type.
Once a task is generated, all the properties of this task are
formed in an event, which is put into the future event queue
of the simulation. The entry time of this event is the time
point when the task is generated. Such generation of tasks is
repeated in each period until the end of the simulation or the
simulation reaches the maximum defined threshold. Once the
scheduled event occurs, the task is created according to the



generated properties. The generated task is further processed
by the Mobile Device Manager. In this implementation, the
data for all tasks is generated before the start of simulation.
However, the task is only created at the time of its occurrence.

C. Problem Definitions

We discover two major issues in the original design affecting
the required execution time:
• Mobility Module does not take advantage of the nature of

a discrete-event simulation. In discrete-event simulation,
the state of the system should not change between the
occurrence of two events [6]. However, in the original
EdgeCloudSim, devices may change their location be-
tween events, since their locations at each time point
are already determined before the simulation. Hence, it is
necessary to search the location tree of a device, although
it is possible that the location has not changed since
the last check, i.e., the system does not know when the
location of a device changes.

• Load Generator Module generates all properties of
tasks before the start of simulation and schedules their
generations by adding them into the event queue. When
a large system needs to be simulated, it can be several
thousands or even millions of events that are created
and added to the event queue in the beginning, which
is actually not necessary. The sorting of the huge event
queue can lead to several problems, e.g., take a large
amount of time or out of memory.

In addition, MobileDeviceManager in Core Simulation Mod-
ule poses a potential issue when the number of tasks is large.
As long as a task is created, it is bound to its corresponding
device. The binding process, i.e., getById method, searches
over a list of tasks iteratively. However this trivial searching
process may become inefficient when the simulation runs
longer, since most information in the list is redundant.

III. ENHANCEMENT

This section explains the proposed enhancements in detail.
The objective of this work is to improve the existing im-
plementation of EdgeCloudSim with respect to its computa-
tion efficiency without affecting the accuracy of the results.
To achieve this, the implementation of computing Mobility
Module and Load Generator Module are enhanced, without
modifying the underlying simulation models. Furthermore,
one class in Core Simulation Module and the other relevant
components are modified in order to meet the functionality of
the enhanced two modules.

A. Mobility Module

The objective to improve the implementation of the Mobility
Module is to realize event-based location changes, and hence
reduce the overhead to check the trees for the information of
movement and locations during the simulation.

In the original design, each device generates a tree to store
the information of movement and locations. The network mod-
ule using the information of devices located at the respective

access point each time to determine the upload and download
delays. Therefore, the locations for all the devices are searched
according to their trees for the current entry.

One possible method to reduce the overhead is to introduce
movement events to the simulation. Instead of constructing a
tree for each device to store all the information of movement
and locations, a device can move dynamically during the
simulation when a movement event occurs. This allows the
simulator to store the number of devices at each location,
and the number keeps the same between two events. And the
number only needs to be modified when a movement event
occurs for a device. The advantage of this method is that these
values can be stored in a single array, whose values can be
directly retrieved without searching. In addition, in the original
design of EdgeCloudSim, the settings document is parsed at
each computed movement to obtain the location data of the
next access point. It is more efficient to store the data for
future movements.

1 p u b l i c vo id move ( i n t d e v i c e I d ){
2 boolean p laceFound = f a l s e ;
3 i n t c u r r e n t L o c a t i o n I d = d e v i c e L o c a t i o n s [ d e v i c e I d ] .

g e t S e r v i n g W l a n I d ( ) ;
4
5 whi le ( p l aceFound == f a l s e ){
6 i n t n e w D a t a c e n t e r I d = S i m U t i l s . getRandomNumber ( 0 ,

S i m S e t t i n g s . g e t I n s t a n c e ( ) .
ge tNumOfEdgeDatacen te r s ( ) −1) ;

7 i f ( n e w D a t a c e n t e r I d != c u r r e n t L o c a t i o n I d ){
8 p laceFound = t rue ;
9 −−d a t a c e n t e r D e v i c e C o u n t [ c u r r e n t L o c a t i o n I d ] ;

10 ++ d a t a c e n t e r D e v i c e C o u n t [ n e w D a t a c e n t e r I d ] ;
11 d e v i c e L o c a t i o n s [ d e v i c e I d ] = d a t a c e n t e r s [

n e w D a t a c e n t e r I d ] ;
12 double wai t i ngT ime = expRngLis t [

n e w D a t a c e n t e r I d ] . sample ( ) ;
13 SimManager x = SimManager . g e t I n s t a n c e ( ) ;
14 x . s c h e d u l e ( x . g e t I d ( ) , wa i t ingTime , SimManager .

getMoveDevice ( ) , d e v i c e I d ) ;
15 }
16 }
17 }

Listing 1. Movement of a device

The detailed implementation is shown in Listing 1. First,
a new access point is selected towards which the device will
randomly move. When this location is found, in the array that
stores the number of devices at an access point, the value
for the old location is decreased by one. The value for the
new access point is incremented by one, and in the array that
stores the locations of the devices, the location for the moved
device is updated. Then the wait time for the device at the new
location is generated using the same model as in the original
design. Finally, the next movement of the device is scheduled
as an event that occurs after the waiting time expires. The
initialization method was also modified according to this
principle. To achieve this, two new functions were added,
namely readDatacenters scans and stores the location data of
each data center to speed up the accesses, and getDeviceCount
is used to directly retrieve the number of devices at an access
point without collecting the location of all devices.

B. Load Generator Module
The objective to improve the implementation of the Load

Generator Module is to reduce the number of events in the



event queue, in order to reduce the overhead of sorting the
queue and inserting new element(s) into the queue for large
simulation scenarios.

In the original design, the generations of all task properties
are at the beginning of the simulation. However, the creation of
a task can only take place when it is to be sent from a device.
All the information for future tasks is stay unused during the
run time of the simulator. Therefore, the load generator is
modified so that only the task properties for the next active
period of a device are generated and inserted to the event
queue. Towards this, another type of event is introduced to
control the generation of task properties, i.e., to schedule the
generation of the task properties for the next active period.

1 p u b l i c vo id c r e a t e T a s k ( i n t d e v i c e I d ){
2 SimManager sm = SimManager . g e t I n s t a n c e ( ) ;
3 double v i r t u a l T i m e = taskRng [ d e v i c e I d ] . sample ( ) ;
4 double c l o c k = CloudSim . c l o c k ( ) ;
5
6 whi le ( v i r t u a l T i m e < a c t i v e P e r i o d s [ d e v i c e I d ] ) {
7 sm . s c h e d u l e ( sm . g e t I d ( ) , v i r t u a l T i m e , sm .

g e t C r e a t e T a s k ( ) , new T a s k P r o p e r t y ( d e v i c e I d ,
t a sk Ty pe OfD ev ic e s [ d e v i c e I d ] , c l o c k +
v i r t u a l T i m e , expRngLis t ) ) ;

8 double i n t e r v a l = taskRng [ d e v i c e I d ] . sample ( ) ;
9 v i r t u a l T i m e += i n t e r v a l ;

10 }
11 sm . s c h e d u l e ( sm . g e t I d ( ) , a c t i v e P e r i o d s [ d e v i c e I d ] +

i d l e P e r i o d s [ d e v i c e I d ] , sm . ge tGenTasks ( ) ,
d e v i c e I d ) ;

12 }

Listing 2. Generation of TaskProperties

The detailed implementation is shown in Listing 2. As long
as the virtual time is smaller than the duration of the active
Period, a new task is generated and scheduled. Then, the
virtual time is increased by a random time interval generated
using the same model as in the original design. This happens
until the virtual time exceeds the active period. At the end,
a new event is scheduled, and aforementioned behavior is
repeated for the next active period.

C. Mobile Device Manager

MobileDeviceManager in Cloud Simulation Module poses
a potential efficiency issue because of the iterative search
process over a list of tasks CloudletList for binding generated
tasks on simulated devices. The task in EdgeCloudSim is an
extension of the Cloudlet in CloudSim, and the MobileDe-
viceManager in EdgeCloudSim extends the DatacenterBroker
class of Cloudsim. Every time when a task is generated, it
is appended at the end of the list and the binding process
bindCloudletToVm is triggered and call getById function.

1 p u b l i c s t a t i c <T ex tends C l o u d l e t> T ge tById ( L i s t<T>
c l o u d l e t L i s t , i n t i d ) {

2 f o r ( T c l o u d l e t : c l o u d l e t L i s t ) {
3 i f ( c l o u d l e t . g e t C l o u d l e t I d ( ) == i d ) {
4 re turn c l o u d l e t ;
5 }
6 }
7 re turn n u l l ;
8 }
9

10 p u b l i c vo id bindCloudle tToVm ( i n t c l o u d l e t I d , i n t vmId ) {
11 C l o u d l e t L i s t . ge tById ( g e t C l o u d l e t L i s t ( ) , c l o u d l e t I d ) .

setVmId ( vmId ) ;
12 }

Listing 3. Retrieving a Cloudlet from CloudletList

The underlying implementation of getById function (see
Listing 3) in fact searches over the list of CloudLet (tasks)
to find the matching id. This function is activated every time
after the generation of a task. However tasks are never removed
from the list even after they are completed. As a result, the
size of the list keeps increasing, with more and more redundant
historical information that decreases the efficiency of search
operations applied to the list.

Since SimLogger is used to output the results of the simula-
tion, which has already stored all the relevant information of
tasks, there is no need to keep all the tasks in the list any more.
MobileDeviceManager only needs to store the information of
tasks that are currently executed in the simulated system. All
tasks that have finished their execution can be safely removed.
As a result, the size of CloudletList is significantly reduced
and the time for searching a task in the list stays steadily short.

D. Further Changes

To integrate the enhanced modules, the central class that
controls the simulation, i.e., SimManager has to be refined.
Three new event types are included: 1) the event that is used
to trigger the movement of a device; 2) the event that is
used to trigger the generation of tasks for an active period;
and 3) the event that is used to trigger SimLogger to log
the current location data. Along with the introduced events,
the corresponding handlers should be adjusted as well. For
example, as only the current location of a device is stored
now, SimLogger should log the information of location on the
fly instead of at the end of simulation. In the end, Network
Module is modified, since it no longer iterates over all devices
to determine the number of devices in a location. It now
utilizes the new functionality of the Mobility Module to get
the number of devices at an access point directly.

IV. VALIDATION AND EVALUATION

In this section, we extensively validate and evaluate the
enhanced design. To this ends, two statistical methods are
adopted, i.e., the Kolmogorov-Smirnov test (KST) [3] and
the Q-Q plot [12], to support the validation process with
statistical arguments. Afterwards, we compare the performance
between the original design and the enhanced design, simply
based on the spent elapsed time of the simulation runs. If the
performance of EdgeCloudSim has been improved, the average
execution time of enhanced design should be significantly
lower than that of the original design for the same scenarios.

A. Kolmogorov-Smirnov Test and Q-Q Plot

The KST reports two values, the statistic D and the p-
value, where D is the maximum vertical distance between
the empirical cumulative distribution functions of the two
samples over the original and enhanced designs. This statistic
is compared to critical values of the Kolmogorov distribution,
and if it is greater than the critical value, the null hypothesis
that both samples come from the same distribution is rejected.
The p-value is the probability of obtaining results that are at
least as extreme as the observed one under the assumption



that the null hypothesis is true. Since the null hypothesis is a
sufficient test to support our arguments, we also provide Q-Q
plots to gain more insights.

B. Evaluation Setup

In order to collect the relevant data for the comparison,
the sample applications given by EdgeCloudSim are adopted.
Since several dynamic influences are simulated by probability
distributions in EdgeCloudSim, we conducted 500 runs for
each comparison in order to obtain sufficiently large samples
against randomness. To investigate if and how device counts
and simulation duration have an impact on the comparability
of the results, the scenarios are executed with varying device
counts and simulation duration parameters. Other parameters
of the sample applications are not changed at all. All required
data is provided by EdgeCloudSim originally, so no further
measures need to be taken in this regard.

For time measurement, the same applications are also
adopted and the file logging was deactivated for both versions
for the time measurement.. They executed on an Ubuntu
20.04.2 PC with an i5-8300H CPU with Turbo-Boost disabled
and with no Hyper-Threading at a base clock of 2.30 GHz
and with 16 GB memory. To analyze the impact of different
numbers of devices, 200, 400, 600, 800, and 1000 devices are
simulated for a simulation duration of 30 minutes. To study
the performance for different simulation duration, 200 devices
are simulated for simulation duration of 30, 60, 90, 120, and
150 minutes. The average execution times of 30 iterations
for each scenario are compared. This sample size should be
sufficient to detect a significant difference between the original
simulator and the enhanced one. The required execution time is
measured in seconds. Since individual runs have duration of a
few seconds to a few minutes, time differences of milliseconds
or smaller are insignificant.

C. Validation of Compatibility

To valid the enhancement, we examine three built-in ap-
plications on three different architectures: 1) single tier, 2)
two-tier, and 3) two-tier architectures with edge orchestrator.
We mainly focus on the first sample application provided
by the original simulator, as the second and third sample
applications result in similar trends, which do not provide
additional insights. For further details, the extensive results
can be found in the repository [4]. For the load generator
module, we compare the total number of generated tasks, the
failure rate of the simulated architecture, i.e. the percentage
of failed tasks, and the average service time, i.e. the average
time that elapsed between sending a task from a device and
the arrival of the result. For the mobility module, we take a
closer look at the types of failures. That is, the number of
failures caused by the network, the movement and the load of
the virtual machines. The other results of the simulation are
not examined specifically, since they have a strong correlation
with the values examined.

For all architectures, we compare the original and enhanced
designs in terms of the number of tasks created, the ratio of
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Fig. 2. Single tier architecture: 500 devices, 30 minutes and sample app 1

failed tasks, the average service time as the most important
simulation results, and the individual failure types. We com-
pare the individual failure types in more detail, in order to
explore whether the enhancement of mobility module leads
to the shifts among individual failure types. In the following
evaluation, 500 devices are simulated. The simulation duration
is 30 minutes. 500 iterations are executed. As significance level
α for the KST 0.05 is chosen. This also applies to all future
tests. In each Q-Q plot, the results of original design is plotted
as a red line with slope 1 that goes through the origin.

Figure 2 shows the Q-Q plots for the single tier architecture.
For all metrics the plots follow a line that goes through
the origin. From the associated results in Table I, the null
hypothesis of identical distribution cannot be rejected, i.e.,
none of p-value is less than 0.05. No task failed due to network
problems in both cases. Figure 3 shows the corresponding Q-
Q plots for the two-tier architecture. We can see from the
Q-Q plot of tasks failed due to mobility failures that there is
a slight shift. Slightly fewer tasks fail in the enhanced design,
but this difference is still not statistically significant, as shown



Single Tier Two-Tier Two-Tier with Orchestrator
Metric statistic D p-value statistic D p-value statistic D p-value

# of Tasks Generated 0.036 0.9022 0.060 0.3291 0.040 0.8186
Failed (Rel) 0.044 0.7184 0.034 0.9347 0.116 0.0024

Avg Serv. Time 0.028 0.9895 0.048 0.6121 0.050 0.5596
Failed (Mob) 0.068 0.1979 0.084 0.0587 0.078 0.0955
Failed (VM) 0.038 0.8632 0.034 0.9347 0.006 1.0000

TABLE I
KST RESULTS OF SAMPLE APPLICATION 1 OVER THREE ARCHITECTURES WITH 500 DEVICES FOR 30 MINUTES.
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Fig. 3. Two tier architecture: 500 devices, 30 minutes and sample app 1

by the Table I. Figure 4 shows the corresponding Q-Q plots for
the two-tier architecture with edge orchastrator. The enhanced
design leads to a slightly reduced number of mobility failures.
However, it can be seen from the Q-Q plots that this effect is
negligible. The only factor that has an impact on the mobility
failures is the average service time. The longer a task takes
to be processed and to be returned, the higher the chance
that the device has moved in between. However, this factor
is also one of the results of the simulation and there is no
difference between two designs in this respect. In Table I,

the KST does not reject the null hypothesis for the number
of mobility failures, but rejects the hypothesis for the rate
of total failed tasks. However, almost no other failure types
occurred in this examination, so the mobility failures dominate
the rate of overall failed tasks leading to the rejection. From
the above observation in the Q-Q plots, we can only observe
a small difference between the designs regarding the number
of mobility failures.

Overall, no significant difference between the results of
the original simulator and the enhanced one is noticeable.
Due to the original design of EdgeCloudSim, the simulation
environment was not deterministic already. Hence, it is impos-
sible to derive the exactly same results, even without applying
the introduced enhancement. Along with the above results,
we can identify that the differences between the counts of
mobility failures are negligible. Hence, we conclude that the
expressiveness of EdgeCloudSim is not affected.

D. Required Execution Time

Figure 5 shows the results of measured time for sample app
1. The left sub-figure shows the average execution times for
the two-tier architecture with edge orchestrator under a fixed
simulation duration (i.e., 30 minutes) for different number
of devices. The right sub-figure shows the average execution
times for different simulation duration. Both sub-figures show
that the enhanced simulator significantly outperforms the orig-
inal design with respect to the average execution time. In
addition, when the number of the devices or the simulation
duration increases, the gap for the difference of performance
increases as well. Figure 6 presents the results for sample
app 2 for the hybrid edge orchestrator policy. Both sub-
figures show a similar trend as Figure 5, i.e., our enhanced
simulator significantly outperforms the original design with
respect to the average execution time, and the advantage
increases greatly with the increasing of the number of devices
or simulation duration. Lastly, Figure 7 illustrates the timing
results for sample app 3, where the hybrid edge orchestrator
policy was simulated, which allows computation on edge
servers as well as on the mobile devices directly. Similarly, the
enhanced design dominates the original design with respect
to the average execution time. The results also show that
the enhanced design has better scalability for the number of
devices and the simulation duration.
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Fig. 4. Two tier architecture with an edge orchestrator: 500 devices, 30
minutes and sample app 1

V. CONCLUSION

Because of the growing popularity of the Internet of Things,
edge computing concept has been widely studied to relieve the
load on the conventional cloud and networks while improving
the service quality for end-users. Since experimenting with real
infrastructure is often uneconomical or not practical during
researches, a discrete-event simulator namely EdgeCloudSim
was widely used. In this paper, we enhance several modules
in the original design without sacrificing any simulation pre-
cision. The proposed enhancement not only improves the run-
time efficiency of simulation, but also improves the flexibility
by fixing the mismatches on the concept of discrete-event
simulation. Through extensive experiments, we show that the
enhancement does not affect the expressiveness of simulations
while obtaining 2 orders of magnitude speedup on average. In
future work, we plan to replace all floating-points with integers
and introduce more real-time task models.
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Fig. 5. Execution time for two-tier with edge orchestrator scenario of sample
app 1 with varying device count and duration (Y-axis is in log-scale).
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Fig. 6. Execution time for hybrid policy of sample app 2 (Y-axis is in log-
scale).
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