118 research outputs found

    Monitoring the Invasion of Spartina alterniflora Using Multi-source High-resolution Imagery in the Zhangjiang Estuary, China

    Get PDF
    Spartina alterniflora (S. alterniflora) is one of the most harmful invasive plants in China. Google Earth (GE), as a free software, hosts high-resolution imagery for many areas of the world. To explore the use of GE imagery for monitoring S. alterniflora invasion and developing an understanding of the invasion process of S. alterniflora in the Zhangjiang Estuary, the object-oriented method and visual interpretation were applied to GE, SPOT-5, and Gaofen-1 (GF-1) images. In addition, landscape metrics of S. alterniflora patches adjacent to mangrove forests were calculated and mangrove gaps were recorded by checking whether S. alterniflora exists. The results showed that from 2003–2015, the areal extent of S. alterniflora in the Zhangjiang Estuary increased from 57.94 ha to 116.11 ha, which was mainly converted from mudflats and moved seaward significantly. Analyses of the S. alterniflora expansion patterns in the six subzones indicated that the expansion trends varied with different environmental circumstances and human activities. Land reclamation, mangrove replantation, and mudflat aquaculture caused significant losses of S. alterniflora. The number of invaded gaps increased and S. alterniflora patches adjacent to mangrove forests became much larger and more aggregated during 2003–2015 (the class area increased from 12.13 ha to 49.76 ha and the aggregation index increased from 91.15 to 94.65). We thus concluded that S. alterniflora invasion in the Zhangjiang Estuary had seriously increased and that measures should be taken considering the characteristics shown in different subzones. This study provides an example of applying GE imagery to monitor invasive plants and illustrates that this approach can aid in the development of governmental policies employed to control S. alterniflora invasion. View Full-Tex

    GSI CTA evaluation of the vertebrobasilar artery in normal adults at high altitude

    Get PDF
    ObjectiveVascular geometry is influenced by several factors during its growth and development. Here, we compared the differences in vertebrobasilar geometry among residents of a plateau region at different altitudes and investigated the relationship between vascular geometry and altitude.MethodsData of some adults in the plateau region who experienced vertigo and headache as the main symptoms but had no evident abnormalities found during imaging examination were collected. They were divided into three groups based on an altitude gradient: group A (1,800–2,500 masl), group B (2,500–3,500 masl), and group C (over 3,500 masl). They underwent head–neck energy-spectrum computed tomography angiography with a gemstone spectral imaging scanning protocol. The following indices were observed: (1) vertebrobasilar geometric configurations (walking, tuning fork, lambda, and no confluence), (2) vertebral artery (VA) hypoplasia, (3) the bending number of bilateral VA intracranial segment, (4) length and tortuosity of the basilar artery (BA), and (5) anteroposterior (AP)–mid–BA angle, BA–VA angle, lateral–mid–BA angle, and VA–VA angle.ResultsOf the 222 subjects, 84 of them were included in group A, 76 in group B, and 62 in group C. The number of participants in walking, tuning fork, lambda, and no confluence geometries was 93, 71, 50, and 8, respectively. As altitude increased, the tortuosity of the BA also increased (1.05 ± 0.06 vs. 1.06 ± 0.08 vs. 1.10 ± 0.13, P = 0.005), as did the lateral–mid–BA angle (23.18° ± 9.53° vs. 26.05° ± 10.10° vs. 31.07° ± 15.12°, P = 0.007) and the BA–VA angle (32.98° ± 17.85° vs. 34.51° ± 17.96° vs. 41.51° ± 19.22°, P = 0.024). There was a relatively weak positive correlation between the altitude and the tortuosity of the BA (rs = 0.190, P = 0.005), the lateral–mid–BA angle (rs = 0.201, P = 0.003), and the BA–VA angle (rs = 0.183, P = 0.006) which showed a significant difference. Compared with groups A and B, there were more multibending groups and fewer oligo-bending groups in group C (P < 0.001). There was no difference found in the vertebral artery hypoplasia, actual length of the BA, VA–VA angle, and AP–mid–BA angle among the three groups.ConclusionAs the altitude increased, the tortuosity of the BA and the sagittal angle of the vertebrobasilar arterial system also increased. The increase in altitude can lead to changes in vertebrobasilar geometry

    Study on Spinnability of PP/PU Blends and Preparation of PP/PU Bi-component Melt Blown Nonwovens

    Get PDF
    Melt blown polymer blends offers a good way to combine two polymers in the same fiber generating nonwovens with new and novel properties. In this study, polypropylene (PP) and polyurethane (PU) were blended to prepare PP/PU bicomponent melt blown nonwovens. The spinnability of PP/PU composites was investigated and PP/PU bi-component nonwovens with compositions of 95/5, 90/10, 80/20 and 70/30 were prepared by using the melt blowing technique. The melt blown fibers exhibited a ‘sea-island’ structure with PP as the continuous phase and PU as the dispersed phase. When the content of PU in the blend was above 40 %, PP/PU melt blown nonwovens could not be produced due to fiber breaking. For PP/PU (90/10) nonwovens, it was found that the average fiber diameter decreased with increasing die to collector (DCD) and elevated hot air pressure

    Spatial Expansion and Soil Organic Carbon Storage Changes of Croplands in the Sanjiang Plain, China

    Get PDF
    Soil is the largest pool of terrestrial organic carbon in the biosphere and interacts strongly with the atmosphere, climate and land cover. Remote sensing (RS) and geographic information systems (GIS) were used to study the spatio-temporal dynamics of croplands and soil organic carbon density (SOCD) in the Sanjiang Plain, to estimate soil organic carbon (SOC) storage. Results show that croplands increased with 10,600.68 km2 from 1992 to 2012 in the Sanjiang Plain. Area of 13,959.43 km2 of dry farmlands were converted into paddy fields. Cropland SOC storage is estimated to be 1.29 ± 0.27 Pg C (1 Pg = 103 Tg = 1015 g) in 2012. Although the mean value of SOCD for croplands decreased from 1992 to 2012, the SOC storage of croplands in the top 1 m in the Sanjiang Plain increased by 70 Tg C (1220 to 1290). This is attributed to the area increases of cropland. The SOCD of paddy fields was higher and decreased more slowly than that of dry farmlands from 1992 to 2012. Conversion between dry farmlands and paddy fields and the agricultural reclamation from natural land-use types significantly affect the spatio-temporal patterns of cropland SOCD in the Sanjiang Plain. Regions with higher and lower SOCD values move northeast and westward, respectively, which is almost consistent with the movement direction of centroids for paddy fields and dry farmlands in the study area. Therefore, these results were verified. SOC storages in dry farmlands decreased by 17.5 Tg·year−1 from 1992 to 2012, whilst paddy fields increased by 21.0 Tg·C·year−1

    Distinct hyperuricemia trajectories are associated with different risks of incident diabetes: A prospective cohort study

    Get PDF
    Background and aim: Conflicting results suggest a link between serum uric acid and diabetes and previous studies ignored the effect of continuous exposure of serum uric acid on diabetes risk. This study aims to characterize hyperuricemia trajectories in middle-aged adults and to examine its potential impact on diabetes risk, considering the role of obesity, dyslipidemia, and hypertension. Methods and results: The cohort included 9192 participants who were free of diabetes before 2013. The hyperuricemia trajectories during 2009–2013 were identified by latent class growth models. Incident diabetes during 2014–2018 was used as the outcome. Modified Poisson regression models were used to assess the association of trajectories with diabetes. Furthermore, marginal structural models were used to estimate the mediating effects of the relationship between hyperuricemia trajectories and diabetes. We identified three discrete hyperuricemia trajectories: high-increasing (n = 5794), moderate-stable (n = 2049), and low-stable (n = 1349). During 5 years of follow-up, we documented 379 incident diabetes cases. Compared with the low-stable pattern, the high-increasing pattern had a higher risk of developing diabetes (RR, 1.42; 95% CI: 1.09–1.84). In addition, the percentages of total effect between the high-increasing hyperuricemia pattern and diabetes mediated by obesity, dyslipidemia, and hypertension were 24.41%, 18.26%, and 6.29%. However, the moderate-stable pattern was not associated with an increased risk of diabetes. Conclusions: These results indicate that the high-increasing hyperuricemia trajectory is significantly associated with an increased risk of diabetes. Furthermore, obesity, dyslipidemia, and hypertension play mediating roles in the relationship between the high-increasing hyperuricemia pattern and increased diabetes risk

    Successful treatment of dupilumab in Kimura disease independent of IgE: A case report with literature review

    Get PDF
    Kimura disease (KD) is a rare and benign chronic inflammatory disease of unknown cause. It is characterized by subcutaneous granuloma of soft tissues in the head and neck region, increased eosinophil count, and elevated serum IgE. Currently, no definitive treatments are recommended. A 57-year-old Chinese man was diagnosed with KD after 7 years of slow subcutaneous masses growth. The patient underwent treatment of oral glucocorticoids for 1 year, but the masses recurred as the dosage was tapered down. Subsequent anti-IgE therapy of omalizumab administered subcutaneously at 450 mg/day at a 4-week interval did not show improvement. The size of masses and serum IgE and circulating eosinophils did not decrease significantly after 19 cycles of continuous treatment. Ultimately, switched strategy of dupilumab was applied at an initial dose of 600 mg, followed by 300 mg every 2 weeks for 4 months. This treatment demonstrated dramatical effects with reduced masses in each area and fast dropdown of eosinophil counts, while the high level of serum IgE remained without changes. Recently, different biologics including anti-IgE, anti-IL-5, and anti-IL-4/IL-13 have been applied to treat KD with satisfied results and help to explore the pathogenesis of this rare disease. To our knowledge, this is the first report that demonstrates the effects of two different biologics in the same patient and reveals the impressive clinical efficacy of dupilumab to treat KD independent of IgE. Therefore, further investigation of the underlying mechanism and the development of diagnosis and treatment of KD is valuable

    Characteristic gene expression in the liver monocyte-macrophage-DC system is associated with the progression of fibrosis in NASH

    Get PDF
    BackgroundThe monocyte-macrophage-dendritic cell (DC) (MMD) system exerts crucial functions that may modulate fibrogenesis in nonalcoholic steatohepatitis (NASH). In this study, we explored the cell characteristics, distribution and developmental trajectory of the liver MMD system in NASH mice with fibrosis and clarified characteristic genes of the MMD system involved in liver fibrosis progression in NASH mice and patients.MethodsSingle cells in liver tissue samples from NASH and normal mice were quantified using single-cell RNA sequencing (scRNA-seq) analysis. Differentially expressed genes (DEGs) in the MMD system by pseudotime analysis were validated by tyramide signal amplification (TSA)-immunohistochemical staining (IHC) and analyzed by second harmonic generation (SHG)/two-photon excitation fluorescence (TPEF).ResultsCompared with control mice, there were increased numbers of monocytes, Kupffer cells, and DCs in two NASH mouse models. From the transcriptional profiles of these single cells, we identified 8 monocyte subsets (Mono1-Mono8) with different molecular and functional properties. Furthermore, the pseudotime analysis showed that Mono5 and Mono6 were at the beginning of the trajectory path, whereas Mono2, Mono4, Kupffer cells and DCs were at a terminal state. Genes related to liver collagen production were at the late stage of this trajectory path. DEGs analysis revealed that the genes Fmnl1 and Myh9 in the MMD system were gradually upregulated during the trajectory. By TSA-IHC, the Fmnl1 and Myh9 expression levels were increased and associated with collagen production and fibrosis stage in NASH mice and patients.ConclusionsOur transcriptome data provide a novel landscape of the MMD system that is involved in advanced NASH disease status. Fmnl1 and Myh9 expression in the MMD system was associated with the progression of NASH fibrosis

    Application of nanopore adaptive sequencing in pathogen detection of a patient with Chlamydia psittaci infection

    Get PDF
    IntroductionNanopore sequencing has been widely used in clinical metagenomic sequencing for pathogen detection with high portability and real-time sequencing. Oxford Nanopore Technologies has recently launched an adaptive sequencing function, which can enrich on-target reads through real-time alignment and eject uninteresting reads by reversing the voltage across the nanopore. Here we evaluated the utility of adaptive sequencing in clinical pathogen detection.MethodsNanopore adaptive sequencing and standard sequencing was performed on a same flow cell with a bronchoalveolar lavage fluid sample from a patient with Chlamydia psittacosis infection, and was compared with the previous mNGS results.ResultsNanopore adaptive sequencing identified 648 on-target stop receiving reads with the longest median read length(688bp), which account for 72.4% of all Chlamydia psittaci reads and 0.03% of total reads in enriched group. The read proportion matched to C. psittaci in the stop receiving group was 99.85%, which was much higher than that of the unblock (<0.01%) and fail to adapt (0.02%) groups. Nanopore adaptive sequencing generated similar data yield of C. psittaci compared with standard nanopore sequencing. The proportion of C. psittaci reads in adaptive sequencing is close to that of standard nanopore sequencing and mNGS, but generated lower genome coverage than mNGS.DiscussionNanopore adaptive sequencing can effectively identify target C. psittaci reads in real-time, but how to increase the targeted data of pathogens still needs to be further evaluated

    Recent Advance of Electrochemical Immunosensor for Pesticide Residues Detection

    No full text
    Electrochemical immunosensors have emerged as a highly sensitive and rapid technique for the detection of specific pesticide based on the immunological interactions between the binding biomolecules (antibody or hapten) onto the transducer interface and the target analyte (hapten or antibody). In terms of the development of electrochemical immunosensors, the antibody (Ab) /hapten immobilization onto a transducer or a support matrice is a crucial step in improving the analytical performance, such as response, reproducibility, stability, selectivity and regeneration. This paper presents an overview of different types of electrochemical immunosensors and their principles and various immobilization protocols used for formation of a biorecognition interface, such as physical adsorption, covalent coupling, entrapment, oriented immobilization, self-assembled monolayer, nanoparticles. In addition, future prospects toward the development of electrochemical immunosensor systems are discussed
    • …
    corecore