2,172 research outputs found

    Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve

    Get PDF
    Spin-dependent transport through a quantum-dot (QD) ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR) as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively

    Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic cardiomyopathy, a diabetes-specific complication, refers to a disorder that eventually leads to left ventricular hypertrophy in addition to diastolic and systolic dysfunction. In recent studies, hyperglycemia-induced reactive oxygen species (ROS) in cardiomyocytes have been linked to diabetic cardiomyopathy. GATA binding protein 4 (GATA-4) regulates the expression of many cardio-structural genes including cardiac troponin-I (cTnI).</p> <p>Methods</p> <p>Streptozotocin-induced diabetic rats and H9c2 embryonic rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr) were used to examine the effect of hyperglycemia on GATA-4 accumulation in the nucleus. cTnI expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of cTnI and GATA-4 by Western blot analysis.</p> <p>Results</p> <p>Cardiac output was lowered in STZ-induced diabetic rats. In addition, higher expressions of cardiac troponin I (cTnI) and phosphorylated GATA-4 were identified in these rats by Western blotting. The changes were reversed by treatment with insulin or phlorizin after correction of the blood sugar level. In H9c2 cells, ROS production owing to the high glucose concentration increased the expression of cTnI and GATA-4 phosphorylation. However, hyperglycemia failed to increase the expression of cTnI when GATA-4 was silenced by small interfering RNA (siRNA) in H9c2 cells. Otherwise, activation of ERK is known to be a signal for phosphorylation of serine105 in GATA-4 to increase the DNA binding ability of this transcription factor. Moreover, GSK3β could directly interact with GATA-4 to cause GATA-4 to be exported from the nucleus. GATA-4 nuclear translocation and GSK3β ser9 phosphorylation were both elevated by a high glucose concentration in H9c2 cells. These changes were reversed by tiron (ROS scavenger), PD98059 (MEK/ERK inhibitor), or siRNA of GATA-4. Cell contractility measurement also indicated that the high glucose concentration decreased the contractility of H9c2 cells, and this was reduced by siRNA of GATA-4.</p> <p>Conclusions</p> <p>Hyperglycemia can cause systolic dysfunction and a higher expression of cTnI in cardiomyocytes through ROS, enhancing MEK/ERK-induced GATA-4 phosphorylation and accumulation in the cell nucleus.</p

    Neural-PBIR Reconstruction of Shape, Material, and Illumination

    Full text link
    Reconstructing the shape and spatially varying surface appearances of a physical-world object as well as its surrounding illumination based on 2D images (e.g., photographs) of the object has been a long-standing problem in computer vision and graphics. In this paper, we introduce a robust object reconstruction pipeline combining neural based object reconstruction and physics-based inverse rendering (PBIR). Specifically, our pipeline firstly leverages a neural stage to produce high-quality but potentially imperfect predictions of object shape, reflectance, and illumination. Then, in the later stage, initialized by the neural predictions, we perform PBIR to refine the initial results and obtain the final high-quality reconstruction. Experimental results demonstrate our pipeline significantly outperforms existing reconstruction methods quality-wise and performance-wise

    Braiding topology of symmetry-protected degeneracy points in non-Hermitian systems

    Full text link
    Degeneracy points in non-Hermitian systems are of great interest. While a framework exists for understanding their behavior in the absence of symmetry, it does not apply to symmetry-protected degeneracy points with reduced codimension. In this work, we investigate the braiding topology and non-abelian conservation rule of these symmetry-protected degenerate points. We find that, contrary to simple annihilation, pairwise created symmetry-protected degeneracy points merge into a higher order degeneracy point, which goes beyond the abelian picture. We verify these findings using a model Hamiltonian and full-wave simulations in an electric circuit system.Comment: 17 pages, 7 figure

    Multi-body SE(3) Equivariance for Unsupervised Rigid Segmentation and Motion Estimation

    Full text link
    A truly generalizable approach to rigid segmentation and motion estimation is fundamental to 3D understanding of articulated objects and moving scenes. In view of the tightly coupled relationship between segmentation and motion estimates, we present an SE(3) equivariant architecture and a training strategy to tackle this task in an unsupervised manner. Our architecture comprises two lightweight and inter-connected heads that predict segmentation masks using point-level invariant features and motion estimates from SE(3) equivariant features without the prerequisites of category information. Our unified training strategy can be performed online while jointly optimizing the two predictions by exploiting the interrelations among scene flow, segmentation mask, and rigid transformations. We show experiments on four datasets as evidence of the superiority of our method both in terms of model performance and computational efficiency with only 0.25M parameters and 0.92G FLOPs. To the best of our knowledge, this is the first work designed for category-agnostic part-level SE(3) equivariance in dynamic point clouds

    2-Amino-4-(3-fluoro­phen­yl)-6-(naphthalen-1-yl)pyridine-3-carbonitrile

    Get PDF
    There are two independent mol­ecules in the asymmetric unit of the title compound, C22H14FN3, which differ slightly in the relative orientations of the naphthyl and phenyl groups with respect to the pyridyl ring framework. In one mol­ecule, the naphthyl ring system and the phenyl ring form dihedral of angles 56.50 (2) and 48.23 (3)°, respectively, with the pyridyl ring plane. In the other mol­ecule, the corresponding dihedral angles are 50.01 (2) and 51.1 (3)°, respectively. In the crystal, inter­molecular N—H⋯N hydrogen bonds connect the independent mol­ecules into dimers
    corecore